
mostly mismatched) P:Q pairs. While these new “ordered” pairs may not be as occurred 

in nature, each event component (P and Q) has the same calculated (i.e., plotting position) 

return period. 

 

This puts the CN equation in the role of a function that transforms a rainfall frequency 

curve to a runoff frequency curve. Precedent for this tactic is found in the works of 

Schaake et al. (1967) who applied it in determining rational coefficients in an urban 

setting. This method per se - as applied to CNs - is treated later in this section. Thus, P:Q 

data has two forms; natural (paired as it occurred), and ordered (or re-matched as 

described here).     

 

Rainfall depth effects: In essentially all cases – using both natural and ordered data sets - 

a residual relationship between the data-defined CN and the causative rainfall depth P is 

apparent. The data-defined CNs are not independent of the rainfall depth itself, and a 

distinct bias to high CNs at small rainfalls is evident.  While this is evident upon closer 

examination in NEH4 examples and in the data used by Hjelmfelt et al. (1982), the 

phenomenon was first shown and demonstrated by Sneller (1985).  It may be attributed to 

a mixture of data censoring, partial area effects, and to basic error in the model or the 

data.  Data censoring results from the common practice of excluding from the data sets all 

rainfall events without direct runoff, thus assuring P 0.2S, and 100/(1+P/2)<CN<100.  

On the other hand, to the extent that any CNs are manifested at low rainfalls (for which 

there are many storms), they would – by definition – define high CNs. Additionally, 

partial area runoff, as from direct channel interception or from other impervious areas, 

can reproduce the declining CN action as well. 

  

Springing from the above, several distinct CN-P response patterns have been observed, 

described, and labeled (Hawkins 1990, 1993).  The dominating behaviors are:  

 

Standard: Characterized by a declining CN with increasing P, but approaching a 

constant or near-stable value asymptotically at higher rainfalls. This is the most 

common case, and is found in most agricultural, urban, and rangeland settings where 

rainfall excess is thought to arise from infiltration processes. CN can be determined 

from such data.  Because of sample size limitations from small data sets, not all show 

a well-defined fixed stable CN, but indicate an approach to it. 

 

Complacent: This condition is also characterized by declining CN with increasing P, 

but without approaching a fixed equilibrium value in the period of record. This can be 

caused by small constant source areas as may arise from direct channel rainfall.  It is 

commonly found with well-forested watersheds with baseflow. CN fitting is 

inappropriate in such situations. Such data are more aptly fit to Q=CP, with C values 

usually in the range of 0.005-0.070, rather than to the CN equation (Hawkins, 1973).  

 Complacent behavior is apparently also widely found in urban watersheds, as clearly 

illustrated by Pitt (1999). This is especially cogent in the case of smaller storms which 

carry the bulk of urban non-point pollution.  

 

Violent: This pattern is characterized by Complacent behavior with declining CNs at 

the lower rainfalls, but with a sudden change to a much higher runoff response at 
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some threshold elevated rainfall depth. Typically, such threshold depths are in the 

range of 1.5 to 2.5 inches, and a higher near-constant CN is approached with 

increasing rainfall, typically in the 85-95 range. 

 

These behaviors or responses to rainfall are illustrated by Figures 9 to 11. 
 

 
 

Figure 9. Complacent CN response to rainfall. The natural P:Q data from which these 

area drawn data are a composite for 13 small wild land (mainly forested)  watersheds in 

Colorado, Utah, Arizona, and Idaho, totaling 313 events.  

 

The data in Figure 9 are drawn from several different primary sources (see Springer and 

Hawkins, 2005).  Note the similarity of response for natural (not ordered) data points, the 

lines of low runoff ratio C, and that no stable constant CN is apparent.  In Figure 10, the 

drainage area for Hastings is 411 acres (166 ha), and the cover was a variety of rainfed 

row crops [data from USDA, Agricultural Research Service].  The drainage area for Zulu 

15 was 1364 ha. Those data were supplied by Dr. Roland Schulze, University of Natal 

(now University of KwaZulu-Natal), Pietermaritzburg. The watershed is described by 

Hope (1980), and it has cover from a variety of rainfed agricultural crops, grasslands, and 

woodlands.  The drainage area for Berea 6 in Figure 11 is 287 acres (116 ha), and the 

cover is a hardwood forest on “very shallow sandy loam soils.” (details in see Hewlett et 

al., 1984).  In Figures 10 and 11, CNs for natural (squares) and ordered (empty circles) 

data are shown. 
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Figure 10. Standard CN response to rainfall.  The upper figure is for Hastings, Nebraska, 

44002 for 482 events from 1939 to 1967.  The lower figure is for 44 events from Zulu 15 

in South Africa. 
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The three main patterns above are observed with both natural and ordered data sets, 

though as shown it is more apparent with ordered data. However, only the Standard and 

Violent data cases are suitable for CN definition. The several phenomena and 

opportunities described above should be observed in extracting CNs from field data. For 

example, the rainfall–CN effect precludes determining mean CNs from small data sets, 

which will usually over-sample the smaller, high CN events, and thus lead to a high CN 

bias. The equilibrium values found at higher rainfalls will be more fitting to the higher 

rainfall design situation, and are a more stable measure of the watershed response. And 

finally, all watersheds do not follow the CN rainfall-runoff response pattern. Complacent 

behavior is not appropriate to the CN rainfall-runoff response. 

 

 
 

Figure 11. Violent CN response to rainfall.  Illustrated by rainfall and runoff for Berea 6, 

Kentucky, covering 84 events from 1969-76 [data from USDA Forest Service].  

 

Several other P-CN pattern clusters have also been observed, and are described here for 

perspective. The Abrupt pattern (or a low threshold form of Violent behavior), is 

characteristic of very highly urbanized and impervious watersheds, and is CN consistent. 

The Inactive grouping describes watersheds which show no event runoff over a long 

period of instrumentation.  No CNs can be determined for this case.  Indeterminate 

watersheds respond to rainfall, but in such a subdued manner that no clear or realistic 

association of rainfall data to runoff hydrographs can be made. These three categories are 
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not relevant here.   It should also be noted that the P-CN relationships described above 

also have corresponding expression in the P-Q plane (Hawkins, 1990a, b).  
 

Alternatives to annual series: Most rainfall runoff data sets contain more than a single 

event per year sampling the rainfall-runoff process. Using an annual peak series provides 

only a single sample for an entire year, but respects the original NEH4 example and the 

accompanying notion that the method is intended only for annual peak calculation.  In the 

interest of data economy (i.e., large samples) many investigators have used multiple 

events per year, on the assumption that the smaller storms express the same identifying 

hydrologic characteristics as do the annual flood events. 

 

The above three considerations; data ordering, effects of rainfall depth, and sample 

selection/data censoring (i.e., annual series or complete series, and minimum storm size) 

dominate the choice of specific procedures applied. 

 

Least Squares method: Here the task is to find the value of S such that it achieves the 

minimum value of the objective function, F, or  

 

 Minimize F = [Qcalc-Qobs]
2
          [58] 

 

where Qcalc is given from the CN runoff equation [1], including Q=0 for the P 0.2S 

condition,  and the observed rainfall P, (or Pobs  to be consistent above). Recalling the 

high-CN low-P effects, a consideration here is the lower limit of rainfalls.  It is common 

to use all Pobs>1 inch, for example, or to censor the data so that Pmin/S>0.46 (Hawkins et 

al., 1985).  It does treat the quantity of interest, i.e., the direct runoff, and is perhaps the 

most intuitive method, especially when using natural data. It provides easily understood 

and traditional goodness-of-fit measures; r
2 

and Se. Negative values of r
2
 (as a measure of 

variance reduction) are possible, and there should be no trend of residual error with P.  

Both ordered and natural data may be so treated.  

 

Perhaps the earliest effort with least squares was by Walker (1970), who used a trial-and-

error least squares fitting to storm runoff data from several small watersheds in Utah’s 

Wasatch Front.  Simanton et al. (1973), Springer et al. (1980), Cooley and Lane (1981), 

Montgomery (1980) and Montgomery and Clopper (1983), Curtis et al. (1983), Bales and 

Betson (1980) also used least squares fitting to arrive at values of S, apparently without a 

lower limit to storm size.  

 

Asymptotic method: This method builds on the observation of CN as a function of P, and 

inserts user judgment into a major role. It deals with CN directly, rather than Q, and with 

both natural and ordered data cases. Event CNs are determined for both the natural and 

ordered P:Q sets, and CN (Y-Axis) plotted against P (X-axis). To outline the lower limits, 

the CNo = 100/(1+P/2) should also be shown.   

  

A. From inspection, if a well-defined constant CN is apparent for the higher P 

values, then that portion of the data is isolated and the mean CN determined.  This 

may occur with Standard, Violent, or Abrupt cases. This is the preferred method. 
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B. If the constant CN is not apparent, but there is a recognizable partial trend 

towards such a steady-state condition, then asymptotic least squares fitting may be 

done to extend the trend to the stable value. For Standard cases, the fitting 

equation is  

 

     CN(P) = CN  +  (100-CN )exp(-kP)     [59] 

 

The decay equation is structurally the same as Horton’s (1939) infiltration 

equation.   

 

For Violent cases, the following has been used 

  

      CN(P) = CN  [1-exp(-kP)]      [60] 

 

A variation on this is to use P-Pmin in the place of P, where Pmin is determined by 

inspection or judgment for individual data sets.  In both of the above the k’s are 

fitting coefficients, and the fitted CN  is taken as the target CN.  The aim in both 

equations [59] and [60] is to extend the trend to an expected asymptotically 

constant CN value at higher rainfalls.  

 

C. For Complacent data sets, several options are possible, depending upon user goals. 

First, the CN search might end, acknowledging that the data is inapplicable to the 

CN method. The simple linear function Q=CP usually fits such data sets nicely, and 

is more appropriate to the suspected source processes. Second, the Standard fitting 

might be done, (i.e., equation [59]) acknowledging the insecurity and inapplicability 

of such extrapolation. Third, the simple equation    

 

     CN(P) = CNo + k(100-CNo)      [61] 

 

has been suggested and used (Hawkins, 1973), where CNo is as previously 

defined, is 100/(1+P/2). With this form, as P , CN(P) 100k=CNu, which 

might be used as an identifying CN. These latter two (Standard fitting and 

Equation [61] above) should be seen as purely curve-fitting endeavors. 

 

The k coefficients in equations [59]-[61] are not equivalent.  The Complacent case is 

unsettling.   It indicates low response, but with a large undeveloped, unmeasured runoff 

potential. While seemingly benign, it may perform as a lead-in to the high-response 

Violent pattern at some unknown higher threshold, above which runoffs and flood peaks 

may be orders of magnitudes greater. This rainfall threshold may be either just above the 

largest storm in the data set, or well beyond human experience. Thus, extending 

experienced Complacent behavior beyond the data to higher rainfalls contains some risk. 

This uncertainty, and the definition of the threshold based on storm and watershed 

factors, is worthy of further investigation. 

 

For the Standard asymptotic fitting via equation 59, it is tacitly assumed that the CN  - 

taken as the watershed CN - is appropriate for remote return period rainfalls (P). That is, 

that the equation with large values of P calculates CN(P) that closely approaches CN . 
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This assumption has not been widely tested. In fact, McCutcheon et al. (2006) suggest 

that with the heavily forested watersheds of their experience, the transient values, i.e., 

CN(P), are important, and should be applied.  This is tantamount to a non-constant, P-

defined CN, a notion at some variance from the original concept of S as a limit of F, and 

from current practice and handbook values. 

 

In addition, the runoff-response group assignments are made via judgmental inspection of 

plotted data. A declining CN with P without a hint of approaching a stable value might 

interpret as a Complacent pattern, a potentially Violent condition, or merely an 

incompletely developed Standard response. These should be treated differently.  

 

From experience, ordered data gives the most consistent and reliable results, and makes 

better use of the available data resources. CNs determined for ordered data are usually1to 

3 CNs higher than those from natural data.  Also, from experience, a minimum sample 

size (N=number of P:Q events) is about 30, though some settings produce more 

consistent storm-to-storm behavior, and  a smaller sample (ca 15) may suffice.  As with 

most data requirements, more is better.  

 

Distribution matching method: This method treats both P and Q as distributed (i.e., 

random) variables, and seeks the CN that best transforms the P distribution to the Q 

distribution via the CN runoff equation. This was first developed in several works by 

Hjelmfelt (1980b, 1983), Hjelmfelt et al. (1982), and Hjelmfelt et al. (1983).  The P and 

Q distributions are displayed on lognormal plots, and the calculated transformation, or the 

CN that best recreates the Q distribution from the P distribution is determined visually. 

The Hjelmfelt (1980b) paper gives four examples with good fits, but an aberrant data set 

– displaying complacent behavior - was also shown, giving an early suggestion that not 

all data sets conform to either the distribution transform notion, or to the CN equation. 

However, this approach is in line with the frequency matching interpretation application 

mode of the CN method. 

 

Enlargement and formalization of this approach was done by Bonta (1997) who used 

“derived distributions” and statistical testing to replace Hjelmfelt’s visual fits. Using a 

trial-and error procedure varying CN, he used the Kolmogorov-Smirnov test to determine 

the best fit between the cumulative distributions of calculated P (back-calculated using 

observed Q and the CN equation) and observed P. The P:Q data was censored to 

P/S>0.465. He determined CNs for a number of Standard and Violent data sets, but was 

unable to achieve satisfactory fittings with Complacent data, which was in keeping with 

Hjelmfelt’s findings.  It should be noted that while the lognormal distribution was used, it 

is not intrinsically required by the CN method.  

 

This general method of matching the observed and P-CN generated Q distributions has 

also been recently applied by McCutcheon et al. (2006) in determining CNs from forested 

watersheds in the southeastern US.    

 

Fitting to continuous and event hydrograph models: As described elsewhere in this 

report, CNs are used frequently in continuous models in a soil moisture management 

mode, so the underlying CN(II) can be treated as a fitting variable. When so treated, a 
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descriptive CN can be determined via the usual techniques of model calibration.  Also, 

when the flood peak is of primary interest in event hydrograph models, a CN can be 

chosen that produces the observed peak, regardless of the volume considerations. This 

approach was used by Titmarsh et al. (1989), and Titmarsh et al. (1995, 1996).  This 

general model fitting method was also pursued - though not centered on flood peaks - by 

Garg et al. (2003). 

 

However, insofar as these methods use CN with other interacting/competing components 

in the model, they mask/confuse the independent role of CN.  Continuous models with 

assumption of soils moisture thresholds, drainage, and evapotranspiration are examples. 

Furthermore hydrograph models intertwine the direct runoff pulses and their sequences 

dictated by the CN equation with routing procedures. Thus, the elemental CN feature - a 

function of only P and Q - is not isolated in these cases. 

 

CNs from rainfall simulation plots: While usually done to measure site infiltration 

properties, rainfall simulation plots offer a tempting avenue to utilize the accompanying P 

and Q data to provide CNs.  In addition, the hope remains that CNs – like infiltration 

measures – are unique measures of site hydrology – and should be tightly related. 

Because of the small plot size, routing considerations are assumed to be minimal, and 

runoff is taken to be identical to rainfall excess. By their very nature they assure that 

overland flow is the dominating process. Additional positive attributes are the high 

quality of the rainfall measurement, usually at several points over the plot area and along 

the plot boundaries, and the ability to visually observe the flow generation in some detail. 

 

Several problems exist in these attempts. First, the rainfalls applied are almost never a 

valid sample of the site’s resident rainfall across all seasons, depths, durations, and 

intensity patterns. Applied rainfalls are usually at a fixed duration (0.5 to 1.0 hour are 

typical) and uniform intensity, typically 25, 50, 75, or 100 mm/hr.  Additionally, 

infiltration capacities as measured in such environments are usually found to be intensity-

dependent (Hawkins, 1982).  While this is consistent with the CN equation, the CN 

equation leads to an infiltration rate form which achieves a stable equilibrium rate of 

zero, in contrast to observed positive steady-state values greater than zero for almost all 

reigning infiltration formulations. The P and Q generated may hang on what may be 

arbitrarily selected measurement protocols. In fact, CNs so generated tend to be 

inconsistent and variable with the above factors. 

  

Nevertheless, such direct CN interpretations have been made and discussed by several 

investigators, including Sabol et al. (1982), Steichen (1983), Partsch and Jarrett (1991), 

and Kuntner (2002).  A slightly different approach was used by Hawkins (1979a) who 

fitted the CN infiltration rate equation to plot infiltration rate data. Numerical infiltration-

based simulations to simulate rainfall-runoff with real break-point rainfall data were 

performed by Pierson et al. (1995), and produced credible – though variable – CN:P 

relations. 

 

Indirect fitting of CN to sprinkler infiltrometer data was done by Wood and Blackburn 

(1984) who compared predicted runoff Q (based soil and cover based handbook CNs) 

with observed runoffs from 1200 rainfall simulation plots runs at 12 range sites in 
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Nevada, Texas, and New Mexico. They found generally poor comparisons, and attributed 

these results to the inappropriate assignment of Hydrologic Soil Groups for arid 

rangelands. 

 

Summary: In brief, the major methods for CN determination from watershed rainfall-

runoff data are: 

 

“NEH4 Method”: Means or medians of groups of event CNs, with the median of annual 

qp events being the default historical NEH4 handbook example. However this approach 

avoids the known tendency of found CNs to decline with storm depth P, and may bias 

towards high CNs. An inconvenient interpretation is that when using the annual qp series, 

the median CN defines the 2-yr return period CN. Also, the use of only one event per 

year requires a corresponding long period of record to gain a statistically-comfortable 

large sample size. Because of this long-record requirement (one data point per year), 

shorter term or transient land use effects – such as fires, seasonal cropping practices, 

silviculture activities, and grazing, may be quite difficult to detect. 

 

From an operational standpoint, one clear appeal of the method is its intrinsic simplicity.  

The historical precedent and authority issues make it the default standard. This method is 

most appropriate using natural data, though ordered data can be used. 

 

Least Squares fits to a large number of P:Q events. This is a familiar curve-fitting 

technique that gives well-known goodness-of-fit statistics. However, the CN-P problem 

described directly above occurs here too, and the biasing effects of high CNs for small 

storms can be dealt with by using only the larger storms, such as P>1”, or for P/S>0.46.  

Using natural data makes the best use of the least squares capabilities and is consistent 

with the original rhetoric that developed the CN equation: i.e., individual events and 

variability around a central trend.  

 

Asymptotic fitting, which recognizes the different runoff response patterns and the 

observed CN-P relationships. It provides a CN , or the CN as P (and its return period) 

approaches infinity, and the parameters for intermediate events.  Also it recognizes that 

not all P:Q data sets fit comfortably to the CN equation, i.e., the Complacent case.  This 

is the method recommended for NEH630 adaptation by the ARS/NRCS Curve Number 

Working Group. (Woodward et al. 2003).  Ordered data has been found to work well with 

this method. Additionally, as practiced, it makes economical use of the data by selecting 

events form the entire data record, not jus the annual events. 

  

Frequency curve transformation of P to Q via the CN equation meets the return period 

matching application of the CN method, but is not appropriate in all cases: in particular, 

if the annual flood peak CNs displays a trend with rainfall.  This method is, however, 

fully appropriate to the P-Q return period matching mode of application. 

 

Other methods are also found. Though not uncommon, fitting with continuous models or 

complete hydrograph models complexes the CN rainfall-runoff effects with other model 

processes, though this approach is not uncommon.  There is little justification or fixed 
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protocols for using rainfall simulation-infiltrometer results to find CNs with present 

techniques. 

 

Methods comparisons: Given the several approaches to extracting CN from data 

described above, the CNs generated by each may be different, and make different 

fundamental definitions of CN.  Thus, method used should be appropriate to the intended 

application.  The best fit CN from an annual series analysis (the NEH4 method) may not 

make the best CN for use in continuous models. General response descriptions reflecting 

and runoff event variety might be best achieved with least squares fits to natural P:Q data 

sets.  

 

In addition, the data choices (ordered vs. natural, annual peaks vs. all significant event, 

etc.) lead to different CNs, as will differences in the fitting criteria. For example, 

asymptotic fittings to ordered P:Q data usually give CNs 1-3 units above those for natural 

data. Outside of the “NEH4 method” - with known limitations as described previously - 

there does not seem to be a general consensus choice. As future data sets are developed, 

this should be a fruitful ground for further research and inquiry.  

 

PERFORMANCE COMPARISONS 
 

CN table comparisons: A measure of the method’s utility is the ability to accurately 

estimate CNs from soils and land information, and thus the ensuing runoff response.  

Several studies have tested this feature. Hawkins (1984) compared handbook estimates 

against P:Q defined (mainly as means and medians) 110 watersheds, and found  

essentially no relationship overall.  When land types were considered, the best estimates 

were for rain-fed agricultural watersheds, and the least accurate were for forested 

watersheds.  Later, similar studies by Titmarsh et al. (1989, 1995, and 1996) used the 

entire hydrograph modeling process to make similar comparisons, and came to similar 

results, as shown in Figure 12. From these two studies, the CN tables and their use (soils) 

do not compare well with the reality suggested from gage data. It would be worthwhile to 

repeat these studies using current data-based CN identification techniques. 

 

Studies giving similar results are also provided by Fennessey (2000), Fennessey et al., 

(2001), Hawkins and Ward (1998), and Bales and Betson (1980). A study by Woodward 

(2003) with 97 urban watersheds with at least three years of data gave a reasonable 

comparison between the average data-defined (average CNs for each site) and handbook 

(i.e., from TR55). The average data-defined CN for the 97 watersheds was 85, and from 

the handbook tables 86.  CN correspondence for individual watersheds varied 

considerably.   A plot of the results from Hawkins and Ward (1998) is given in Figure 13.  

This figure highlights a problem in such analyses: several different tables and charts in 

local or regional usage were available for the “handbook estimates,” and gave different 

results. 

 

On the other hand, as described previously, Hansen et al. (1981) used least squares to find 

CNs on 25 small watersheds in Montana, Wyoming, and South Dakota, and found 

general agreement with handbook values. They used the peak events plus any summer 

runoff events with greater than 6 mm of runoff. 
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