
treatment in wetlands; it uses variables such as geometric storage shape, inflow and outflow rates,
and influent and effluent concentrations. One of the models used in modeling both systems is the
k-C*model. The model has been applied to constructed wetland performance, which has resulted in
good reproducibility of real situations (Kadlec 2000, 2003; Rousseau et al. 2004, Stone et al. 2004). It
incorporates “irreducible minimum concentration” to the first-decay equation, where the observed
effluent concentration converges to a constant value. Assumptions of steady-state and plug flow
conditions, typical of flow hydrodynamics within wetland systems (Kadlec and Knight 1996), are
adopted. The model is defined by

Cout =C� þ ðCin − C�Þe−k∕q (9-42)

where
Cin and Cout = influent and effluent event mean concentration (EMC) (mg/l),
C* = background EMC or irreducible minimum concentration (mg/l),
k = aerial removal rate constant (m/day),
q=Q∕ABMP = BMP hydraulic loading rate (m/day),
Q = average inflow rate (m3/day), and
ABMP = surface area of the BMP (m2).

Although the model assumes steady-state flow conditions, the BMP fills quickly and drains over
a long period (24 to 72 h) at an essentially constant rate. For that reason, the assumption is
reasonable for BMPs. The k-C* model has been used to model wetland performance, and many
studies have verified that this model characterizes the removal of pollutants by wetlands very well
(Kadlec and Knight 1996; Kadlec 2000, 2003; Braskerud 2002; Rousseau et al. 2004; Lin et al. 2005).
Wong et al. (2002, 2006) and Huber et al. (2006) use the k-C* model to simulate stormwater BMPs
because the characteristics of wetlands, detention basins and retention ponds are similar.

Uncertainty in the BMP performance to be discussed here includes (1) the uncertainty in the
input pollutant concentration of the runoff, Cin, which can be calculated using a log–normal
distribution of EMC from field data or literature, and (2) the uncertainty in BMP treatment
effectiveness, which is accounted for by associating the uncertainty with the key performance
parameters of the k-C* model.

9.2.2.1 Uncertainty of Cin

BMP performance data from the International Stormwater BMP Database (www.bmpdatabase.org)
maintained by ASCE and the US Environmental Protection Agency (USEPA) can be used for
characterizing uncertainty in Cin. For example, Table 9-4 lists the locations, number of datasets, and

Table 9-4. Examples of Detention Basins.

BMP type BMP name, location

BMP size

Number of

datasets Volume (m3)

Surface

area (ha) Length (m)

Detention

basin

15/78, Escondido, CA 17 1,122.54 0.0977 60.96

5/605 EDB, Downey, CA 2 364.66 0.0598 47.24

605/91 edb, Cerritos, CA 5 69.57 0.0114 22.86

Manchester, Encinitas, CA 12 252.79 0.0304 22.86

Source: Park et al. (2011).
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sizes of four dry detention BMPs for retrieved total suspended solids (TSS) data, a representative
nonpoint-source pollutant. TSS distributions for both Cin and Cout in these locations are well
represented as log–normal probability plots (Figure 9-6). Table 9-5 shows the results of three
goodness-of-fit tests using the well-known chi–squared, Kolmogorov–Smirnov, and Anderson–
Darling tests. To apply these tests for normality, all Cin and Cout values were transformed using the
natural logarithm (D’Agostino and Stephens 1986, Kottegoda and Rosso 1997). All tests at a
significance level of 0.1 showed that a log–normal distribution can be accepted for both observed Cin

and observed Cout.

9.2.2.2 Uncertainty of Parameter k

The parameter k is related to q with a power function in the k-C*model (Schierup et al. 1990, Lin et al.
2005). However, the variance of Cout, simulated with the k-C*model, changes dramatically depending
on k. Therefore, applying a prediction interval in the k versus q regression line is necessary. A
prediction interval focuses on the variance of individual data, whereas a confidence interval focuses on
the variance of a regression line. The prediction is calculated as (Kutner et al. 2004)

Mean� t0.025s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 1

n
þ ðX − XÞ2
P

n
i= 1ðXi − XÞ2

s

(9-43)

Figure 9-6. Log–normal probability plots of observed Cin and Cout in detention basins.
Source: Park et al. (2011).

Table 9-5. Results of Goodness-of-Fit Tests; Observed Cin and Cout from Figure 9-6.

Test

Critical value (α = 0.10)

DecisionCin Cout

Chi–square 0.663 0.860 Accept

Kolmogorov–Smirnov 0.789 0.852 Accept

Anderson–Darling 0.567 0.685 Accept

Source: Park et al. (2011).
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where
t = critical value of the t distribution for the appropriate degree of freedom (n− 2),
n = number of total data,
s = standard error of the regression,
X = average q at which the confidence interval is calculated,
X = mean of observed q from monitoring data, and
Xi = individual observed q from monitoring data.

For TSS in BMPs, Figure 9-7 exhibits a power regression relation given by k= 1.4841q0.9721,
similar to the ones identified by Schierup et al. (1990) and Lin et al. (2005). A regression of estimated
k using Equation (9-42) versus observed q for each storm event was performed with a 95% prediction
interval of 0.4370. Then, the vertical distribution generating k depending on q is considered a two-
parameter log–normal distribution.

9.2.2.3 Estimation of C*

This approach assumes a known constant value of C* because its uncertainty is less relevant than
the uncertainty of Cin or k. This also helps with reducing the number of parameters needed in the
uncertainty analysis. From the minimum Cout in the dataset and the range of C* suggested in the
literature (Table 9-6), we choose a value of C* = 10 mg/L.

What follows is the uncertainty analysis considering three cases, which require specific
information (Table 9-7): uncertainty in Cin, uncertainty in k, and uncertainty in both. For example,

Figure 9-7. Estimated k versus q using individual storm events for detention basins.
Source: Park et al. (2011).

Table 9-6. Typical Background Concentration Values Proposed in Literature.

Literature TSS (mg/L)

Kadlec and Knight (1996) 5.1 + 0.16 Cin
Barrett (2004) 5∼ 20

Crites et al. (2006) 6

Source: Park et al. (2011).
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to analyze the uncertainty in Cin, the required information is the log–transformed standard deviation
of Cin and the log–transformed means of Cin and k. The standard deviation of k can be estimated
from the distance of the prediction interval between the median k and the 95% prediction interval
shown in Figure 9-7.

9.2.3 Methods for Uncertainty Analysis

Three methods, the derived distribution method (DDM) for the analytical method, the first-order
second moment (FOSM) for the approximation method, and the Latin hypercube sampling (LHS)
for the Monte Carlo simulation, are applied for estimating uncertainty of Cout in the k-C* model.

9.2.3.1 Derived Distribution Method

In the DDM, the PDF of a variable Y = gðXÞ can be obtained given the PDF of X, f xðxÞ. The
transformation from the PDF of X to that of Y entails the substitution of the inverse function of Y
solved for X in the PDF of X. Then, the PDF of Y is (Salas et al. 2004)

f YðYÞ=
�

�

�

�

dg−1ðYÞ
dy

�

�

�

�

f x½g−1ðYÞ� (9-44)

In our case, the variable Y is Cout, and the variable X would be either Cin or k.

9.2.3.2 First-Order Second Moment

In cases where analytical methods such as DDM are cumbersome to apply, approximate methods
have been suggested. For example, FOSM uses a Taylor-series expansion of the performance
function and enables estimating the mean and variance of the performance function as

EðYÞ= E½gðX1, · · · ,XnÞ�≈ gðμ1, · · · , μnÞ (9-45)

VarðYÞ=Var½gðX1, · · · ,XnÞ�≈
X

n
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�
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�

2

μ

VarðXiÞ þ
X

n

i= 1

X

n

j= 1

�

∂g

∂Xi

�

μ

�

∂g

∂X j

�

μ

CovðXi,XjÞ

(9-46)

Table 9-7. Required Parameters Information of Cin and k for Uncertainty Analyses.

Input parameters Cin K

Log–transformed statistical

properties

Mean

= 5.038

Std. dev.

= 0.6083

Mean = log

(1.4841q0.9721)

Std. dev.

= 0.437

Uncertainty

in

Cin ✓ ✓ ✓ –

k (with constant Cin) ✓ – ✓ ✓

k (with constant q) ✓ – ✓ ✓

Cin and k ✓ ✓ ✓ ✓

Source: Park et al. (2011).

✓ = required information for uncertainty computation.
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Assuming that the Xi‘s are independent variables, CovðXi,XjÞ= 0. Then the variance of Y is

VarðYÞ=Var½gðX1, · · · ,XnÞ�≈
X

n

j= 1

�

∂g

∂Xi

�

2

μ

VarðXiÞ (9-47)

where μ̂ln x and σ̂ln x can be calculated from the sample mean and standard deviation of
log–transformed X. Finally, the inverse of the CDF is calculated to quantify the percentile of the
log–normal distribution using the estimated parameters (Salas et al. 2004):

Xp = expðμln x � Zσln xÞ (9-48)

where Z is the standard normal quantile corresponding to exceedance probability, and Xp is the X
value of p percentile.

9.2.3.3 Latin Hypercube Sampling

LHS is a stratified sampling method to reduce variance and sampling error. The steps to apply the
method are as follows (Tung and Yen 2005):

1. Select the number of subintervals, L, and divide the range [0, 1] into L equal intervals.

2. For each subinterval, define ωi as independent-uniform-random numbers from ωl∼U
	

0,1
L




for
l = 1, 2, : : : , L. Then, a sequence of probability values um is generated as

a. ui =
l−1
L
þ ωl l= 1, 2, : : : , L

3. Compute Zl = F−1ðulÞ, in which Fð⋅Þ is the CDF of the random variable of standard normal
distribution.

4. Compute mean and standard deviation from log–transformed Cin or k.

5. Compute generated Cin or k assuming log–normal distribution as X l = expðμlnx þ ZlσlnxÞ.
6. Apply generated Cin or k to the k-C* model.

9.2.4 Sensitivity Results

The distribution of Cout for the k-C*model is then estimated with the two identified distributed input
parameters, Cin and k. Results of uncertainty in Cin, uncertainty in k, and uncertainty in both Cin and
k can be computed. These results assume that geometric (ABMP) and hydrological parameters (Q)
don’t have uncertainty. In addition, the background concentration (C*) is fixed at 10 mg/L because
the minimum value of the observed data used was close to that concentration. Cin and k were
represented as log–normal distributions because their observed distributions are very close to log–
normal (Figure 9-6).

9.2.4.1 Sensitivity of Uncertainty in Cin

The following log–normal distribution f Cin
ðCinÞ for Cin is assumed with a mean value μLnCin

and
standard deviation σLnCin

from the selected TSS of detention basins in the BMP database (see also
Figure 9-6):

f Cin
ðCinÞ=

1
ffiffiffiffiffi

2π
p

CinσlnCin

exp

�

−
1

2

�

lnðCinÞ − μlnCin

σlnCin

�

2
�

(9-49)
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According to Equation (9-44), the PDF for Cout, f ðCoutÞ is given by

f Cout
ðCoutÞ=

�

�

�

�

dg−1ðCoutÞ
dCout

�

�

�

�

f cin ½g−1ðCoutÞ� (9-50)

where,

g−1ðCoutÞ=C� þ ðCout − C�Þ expðk∕qÞ=Cin (9-51)
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�

�

= expðk∕qÞ (9-52)

Substituting Equation (9-51) and Equation (9-52) into Equation (9-50), the resulting PDF for
the effluent EMC, f outðCoutÞ, is
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(9-53)

Adopting the relationship k= 1.4841q0.9721 (Figure 9-8), we obtain

f ðCoutÞ=
1
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(9-54)

Equation (9-54) shows that f ðCoutÞ is a three-parameter log–normal distribution, whose scale
parameter ð1.481q−0.0279Þ and location parameter ðC�f1 − 1∕ expð1.481q−0.0279ÞgÞ vary with q.
f ðCoutÞ is very sensitive to the value of expð1.481q−0.0279Þ when it is a function of q and becomes
closer to the two-parameter log–normal distribution as expð1.481q−0.0279Þ approximates to 1.
However, f ðCoutÞ changes to the three-parameter log–normal distribution for values of
expð1.481q−0.0279Þ much greater than 1.

Figure 9-8a shows comparisons of the PDFs for the three methods: DDM, LHS, and FOSM. DDM
is derived from Equation (9-54) with constant q. Cout assumes a two-parameter log–normal distribu-
tion. The PDF obtained using FOSM differs from the DDM and the LHS when q is both 0.01 and
5 m/day. Conceptual differences among the three methods explain this discrepancy. No assumptions
regarding the distribution of Cout are required by DDM and LHS methods. In contrast, a known PDF
must be assumed for Cout when using the FOSM method. This assumption makes the method simpler
but introduces error. DDM is the most accurate method, but defining the exact value corresponding to a
specific percentile is difficult because an extra computation is needed to estimate the percentile from the
PDF matched with Cout. With LHS, estimating the precise value of a specific percentile is relatively easy.

For q = 0.01 and 5 m/day, expð1.481q−0.0279Þ is 5.41 and 4.13, respectively. Both values are
much greater than 1, and the PDF in Equation (9-54) differs from the log–normal distribution to a
large extent. This creates the differences observed between the DDM and LHS PDFs and the log–
normal PDF obtained using FOSM. Thus, LHS gives the correct representation rather than FOSM
because the LHS PDFs coincide with the DDM PDFs.
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The obtained PDFs of Cout represent the observed data well (Figure 9-8b). The 95% and 50%
confidence intervals represent the high variability of the data, with Cout values being higher and more
scattered for large values of q. Most of the observed data are low q values. As expected, about half of
the observed data are placed out of the 50% confidence interval and two points (5% of the total data)
are located outside of the 95% confidence interval. Figure 9-8c compares the 50% and 95% upper and
lower confidence intervals obtained using LHS and FOSM. With the exemption of the lower 95%
confidence limits, the rest of the limits are very similar. Hence, the distributed Cout is essentially
identical for LHS and FOSM.

9.2.4.2 Sensitivity of Uncertainty in k with Constant q

A constant value of q must be adopted to determine the effect of Cin on the uncertainty of Cout with
respect to k. In this case, we use q = 0.1 m/day. The mean and standard deviation of the log-
transformed k are obtained from Table 9-7. The uncertainty in k with constant Cin for DDM can be
simplified as follows:

f ðCoutÞ=
1
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Figure 9-8. Uncertainty in Cin: (a) PDFs comparison of f(Cout) among DDM, LHS, and FOSM; (b) PDFs

of LHS, including confidence intervals (CIs) and observed data; and (c) comparison of CIs between

LHS and FOSM.
Source: Park et al. (2011).
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Figure 9-9a shows both PDFs for values of Cin = 100 mg/L and 350 mg/L. In this case, only
DDM and LHS are used for the uncertainty analysis. FOSM cannot be used because the Cout

distribution of Equation (9-55) is difficult to define. Both methods produce very similar distributions
and represent a higher variability in Cout as Cin increases. In other words, predicting Cout is more
difficult for a high Cin at a constant q. Figure 9-9b shows the PDFs of Cout for the observed data when
q is restricted to 0.1 m/day. This figure shows the PDF computed using LHS, but almost identical
results are obtained with the PDFs using DDM, as Figure 9-9a illustrates. The 95% and 50%
confidence intervals become wider as q increases. For this analysis, only three observed data points
from Table 9-7 were available as q = 0.1 m/day; two of the three points lie within the 50% confidence
interval and the third is within the 95% confidence interval.

9.2.4.3 Sensitivity of Uncertainty in k with Constant Cin

A constant value of Cin = 170 mg/L is assumed to determine the effect of q on the uncertainty of k.
In this case, the mean and standard deviation of log-transformed k are obtained from Table 9-7.
Figure 9-10a shows PDFs for values of q = 0.01 m/day and 5 m/day. Then, the DDM is given by

Figure 9-9. Uncertainty in k with constant q: (a) PDFs comparison of f(Cout) as a function of Cin using

q = 0.1 m/day between DDM and LHS and (b) PDFs from LHS, including confidence intervals (CIs)

and observed data.
Source: Park et al. (2011).
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Again, we use only DDM and LHS for the uncertainty analysis for the same reason given in the
previous subsection. Both the DDM and LHS methods produce very similar distributions and
represent higher variability in Cout as q increases. In other words, the shapes of the PDFs of Cout

demonstrate a more positive skew with decreasing q. As a result, predict Cout for high q is more
difficult at a constant Cin.

Figure 9-10b shows PDFs of Cout for the observed data obtained from Table 9-4 when Cin is
restricted to 170 mg/L. The 95% and 50% confidence intervals are plotted as well. These intervals
indicate that Cout values are higher and a little more scattered for larger values of q. Two of the three
observed datasets are scattered within the 50% confidence interval, and a third point is located within

Figure 9-10. Uncertainty in k with constant Cin: (a) comparison of f(Cout) as a function of q using

Cin = 170 mg/L between DDM and LHS and (b) PDFs from LHS, including confidence intervals (CIs)

and observed data.
Source: Park et al. (2011).
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the 95% confidence interval. Although having only three datasets available for comparison, they do
validate that PDFs of the k-C* model describe the behavior of observed data. Based on the previous
results, the shape of the PDF as a function of Cin was found to show more change of variance than as
a function of q. It can be concluded that Cin is a more sensitive variable than q for the uncertainty in k
when the k-C* model is considered with TSS.

9.2.4.4 Sensitivity in Both Cin and k

This section assumes no correlation between Cin and k to simplify the calculations. Because of
mathematical complexities, the DDM cannot be applied to derive f ðCoutÞ when uncertainties in both
Cin and k are simultaneously applied to the k-C*model. Thus, we use the FOSMmethod and the LHS
method, which have been shown to generate similar distributions as the DDM method.

Figure 9-11a shows a comparison of both PDFs for q = 0.01 and q = 5 m/day. Both
distributions are relatively similar for q = 5 m/day, but differences are observed in the peak values
for q = 0.01 m/day. The distribution of Cout is skewed to the right for both values of q. As mentioned
previously, the FOSM assumes a log–normal distribution. Thus, the shapes of the PDFs generated by
the LHS and FOSMmethods are expected to differ. Figure 9-11b shows the PDFs obtained with LHS,
their confidence intervals of 50% and 95%, and the observed data. About two-thirds of the total data

Figure 9-11. Uncertainty in both Cin and q: (a) PDFs comparison of f(Cout) as a function of q between

LHS and FOSM; (b) PDFs from LHS, including confidence intervals (CIs) and observed data; and

(c) comparison of CIs between LHS and FOSM.
Source: Park et al. (2011).
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