BS 6349-7: 1991

Incorporating corrigendum January 2010

Maritime structures -

Part 7: Guide to the design and construction of breakwaters

ICS: 47.020.01; 93.140

Confirmed December 2011

NO COPYING WITHOUT BSI PERMISSION EXCEPT AS PERMITTED BY COPYRIGHT LAW

This is a preview. Click here to purchase the full publication.

Committees responsible for this British Standard

The preparation of this British Standard was entrusted by the Civil Engineering and Building Standards Policy Committee (CSB/-) to Technical Committee CSB/17, upon which the following bodies were represented:

Association of Consulting Engineers British Ports Federation and the National Association of Ports Employers British Steel Industry **Concrete Society** Department of the Environment (Property Services Agency) Department of Transport (Marine Directorate) Federation of Civil Engineering Contractors Health and Safety Executive Institution of Civil Engineers Institution of Structural Engineers **Oil Companies International Marine Forum**

This British Standard, having been prepared under the direction of the Civil Engineering and Building Structures Standards Policy Committee, was published under the authority of the Standards Board and comes into effect on 31 October 1991

Amendments issued since publication

© BSI 2010	Date	Comments
The following BSI references	31 January 2010	Correction to equations in 4.4.3 and 4.4.5
relate to the work on this standard: Committee reference CSB/17		
Draft for comment 90/10429 DC		
ISBN 978 0 580 69608 4		

This is a preview. Click here to purchase the full publication.

Contents

Committees responsible		Page Inside front cover	
Foreword		,	
Sectio	n 1. General		
1.1	Scope		
1.2	Definitions		
Sectio	n 2. Layout planning		
2.1	General		
2.2	Harbour layout		
2.2.1			
2.2.2	0 1		
2.2.3	Wave penetration		
2.2.4	Wave overtopping and transmission		
2.2.5	Breakwater alignment		
2.2.6	Physical and computational modelling		
2.3	Environmental effects		
2.3.1	General		
2.3.2	Hydrodynamic regime and sediment transport		
2.3.3	Pollution		
2.3.4	Ecological considerations		
2.4	Data collection		
2.4.1	Meteorology and climatology		
2.4.2	Waves		
2.4.3	Bathymetry and coastal topography		
2.4.4	Water levels		
2.4.5	Water movement		
2.4.6	Sediment transport		
2.4.7	Geotechnical aspects		
2.4.8	Construction materials		
Sectio	n 3. General design of breakwater structures		
3.1	General		
3.2	Design philosophy		
3.2.1	General		
3.2.2	The design wave		
3.2.3	Factors contributing to failure		
3.3	Design development		
3.4	Design wave climate		
3.4.1	Derivation of wave climate		
3.4.2	Design wave conditions		
3.5	Choice of type of structure		
3.5.1	Types of structure		
3.5.2	Factors affecting choice		
3.6	Hydraulic model testing		
3.6.1	Introduction		
3.6.2	Model scales		
3.6.3	Model concrete armour units		
3.6.4	Model construction		
3.6.5	Test programme		
3.7	Risk analysis		

		Page
3.7.1	Limit states	20
3.7.2	Choice of level of risk	20
	Fault trees	20
	Method of analysis	21
	n 4. Rubble mound structures	
4.1	General	22
4.2	Overall design	22
4.2.1	Factors affecting choice of cross section	22
4.2.2	Run-up and overtopping	28
4.2.3	Overall stability	28
4.3	Design of armour	31
4.3.1	General	31
4.3.2	Rock armour	31
4.3.3	Concrete armour units	32
4.3.4	Design formulae	34
4.3.5	Thickness and extent of armour layer	37
4.3.6	Crest and rear face armour	38
4.4	Design of core and underlayers	38
4.4.1	General considerations	38
4.4.2	Grading of core material	38
4.4.3	Sizing of underlayer material	39
4.4.4	Thickness of underlayers	40
4.4.5	Filters for reclamation	40
4.5	Design of crest structures	41
4.5.1	General considerations	41
4.5.2	Structural design	43
4.5.3	Analysis	43
4.6	Design of toe and apron	44
4.7	Design of foundations	49
4.8	Design of breakwater head	49
4.9	Low crest breakwaters	50
4.9.1	General considerations	50
4.9.2	Design of armour	51
4.10	Construction materials	51
4.10.1	Rock	51
4.10.2	Concrete	53
4.10.3	Geotextiles and related products	53
4.10.4	Bituminous materials	53
4.11	Construction	53
4.11.1	General	53
4.11.2	Construction plant	53
4.11.3	Construction sequence	54
4.11.4	Toe construction	54
4.11.5	Core and underlayers	54
4.11.6	Armour	54
4.11.7	Measurement, deviations and tolerances	56
	Crest structure	56
4.12	Monitoring and maintenance	57
Sectio	n 5. Vertical face structures	
5.1	General	58
5.2	Types of structure	58

ii

pa	ge

F 0 1 (
	General58	-
5.2.2	Structures with solid face	5
5.2.3	Structures with perforated face	5
5.2.4	Structures with rubble mound at seaward face	5
5.3	Design	5
5.3.1	General	5
5.3.2	Hydraulic performance	58
5.3.3	Loads	6'
5.3.4	Overall stability	6
5.3.5	Foundations	6
5.3.6	Anti-scour protection	7
5.3.7	Crest structures	7
5.3.8	Breakwater head	7
5.3.9	Durability and detailing	72
5.4	Caisson structures	72
5.4.1	General	72
5.4.2	Shape	72
5.4.3	Foundations	7
5.4.4	Floating condition	7
5.4.5	Fill	7
5.4.6	Joints between caissons	7
5.4.7	Crest structure	7
5.5	Concrete blockwork structures	7
5.6	Mass concrete structures	7
5.7	Cellular sheet piled structures	7
5.7.1	General	7
5.7.2	Anti-scour protection	7
5.7.3	Crest structures	7
5.8	Double-wall sheet piled structures	7
5.9	Single-wall sheet piled structures	7
	n 6. Composite structures	
6.1	General	7
6.2	Types of structure	7
6.3	Design of composite breakwater structures	. 7
6.3.1	Introduction	7
6.3.2	Factors affecting choice of cross section	7
6.3.2	Hydraulic performance	7
6.3.4	Loads Orverell stability	7
6.3.5	Overall stability	7
6.3.6	Substructure and foundations	7
6.3.7	Superstructure	8
6.4	Construction	8
	dix A Bibliography	8
A.1	Publications referred to in the text	8
A.2	Further reading	8
Figure	e 1 — Typical breakwater layouts	
	$\simeq 2 - { m Relationship}$ between design life, return period and	
-	pility of exceedence	
Figure	e 3 — The design process	1
Figure breaky	e 4 — Typical cause-consequence chart for a rubble mound	2

	Page
Figure 5 — Elements and functions of typical rubble mound	
breakwaters	23
Figure 6 — Examples of rubble mound breakwaters with underlayers	24
Figure 7 — Examples of rubble mound breakwaters without	
underlayers	27
Figure 8 — Transmitted wave height due to overtopping relative to	
freeboard of rubble mound	29
Figure 9 — Transmitted wave height due to overtopping as a function	
of percentage exceedence	30
Figure 10 — Significant causes of failure due to wave action	31
Figure 11 — Examples of concrete armour units	33
Figure $12 - Typical$ crest structures for rubble mound breakwaters	42
Figure 13 — Toe details for rubble mound breakwaters	45
Figure 14 — Falling apron for rubble mound breakwaters	47
Figure 15 — Threshold movement of stone on sea bed under	
wave action	48
Figure 16 — Typical breakwater roundhead construction	50
Figure 17 — Typical construction sequence for rubble mound	
breakwater	55
Figure 18 — Caisson structures	59
Figure 19 — Concrete blockwork structure	61
Figure 20 — Mass concrete structure	61
Figure 21 — Typical cellular sheet piled structure	62
Figure 22 — Double-wall sheet piled structure	63
Figure 23 — Single-wall sheet piled structure	64
Figure 24 — Vertical wall structure with perforated face	64
Figure 25 — Slotted wavescreen	65
Figure 26 — Vertical wall structures with armour mound at	00
seaward face	66
Figure 27 — Wave transmission coefficients due to overtopping	68
Figure 28 — Stability number $N_{\rm s}$ for rubble foundation and toe	
protection	71
Figure 29 — Typical caisson joints	74
Figure 30 — Typical composite breakwater structures	78
Figure 31 — Failure modes for a composite breakwater structure	79
Table 1 — Wind speed adjustment, nearshore	12
Table 2 — Overtopping water: safety considerations	12
Table 2 — Overtopping water, safety considerations Table 3 — Movement of concrete armour units in models	14
	19 19
Table 4 — Damage classification in model breakwaters	
Table 5 — Typical values of voids for armour	32
Table 6 — Suggested maximum sizes of concrete armour units	34
Table 7 — Suggested $K_{\rm D}$ values for rock armour using Hudson's formula	96
	36
Table 8 — Suggested preliminary $K_{\rm D}$ values for concrete armour units in structure trunk	37
	57
Table 9 — Weight of rock in underlayer for some concrete armour units	39
Table 10 — Layer coefficients	41
Table 10 — Engineering characteristics and performance of	71
common rocks	52
Publication(s) referred to Inside bac	

Foreword

This Part of BS 6349 has been prepared under the direction of the Civil Engineering and Building Structures Standards Policy Committee.

This Part of BS 6349 consists of six sections providing guidance for the design and construction of breakwaters as follows.

- Section 1: General;
- Section 2: Layout planning;
- Section 3: General design of breakwater structures;
- Section 4: Rubble mound structures;
- Section 5: Vertical face structures;
- Section 6: Composite structures.

It has been assumed in the drafting of this British Standard that the execution of its provisions is entrusted to appropriately qualified and experienced people, for whose guidance it has been prepared. It provides information and guidance, not all of which may be directly verifiable. Depending upon the extent of information and knowledge gained in this field in the coming years, it is possible that this guide could be updated as a code of practice.

The seven Parts of BS 6349 are as follows.

— Part 1: General criteria;

— Part 2: Design of quay walls, jetties and dolphins;

- Part 3: Design of dry docks, locks, slipways and shipbuilding berths, shiplifts and dock and lock gates;

- Part 4: Design of fendering and mooring systems;
- Part 5: Code of practice for dredging and land reclamation;
- Part 6: Design of inshore moorings and floating structures;
- Part 7: Guide to the design and construction of breakwaters.

Parts 1 to 6 have been written as codes of practice and contain recommendations on good, accepted practice as followed by competent practitioners. Part 7 has been written as a guide.

A number of the figures and tables in this Part of BS 6349 have been provided by individual organizations who own the copyright. The details of the sources are given at the foot of each figure and BSI acknowledges with appreciation permission to reproduce them.

The full list of the organizations which have taken part in the work of the Technical Committee is given on the inside front cover. The Chairman of the Committee was Mr P Lacey CEng, FICE, FIStructE, FIHT, FRSA and the following were members of the Technical Committee.

J G Berry	BA, BAI, CEng, FICE, MIStructE
T Cunnington	BSc, CEng, MICE
D F Evans	CEng, FICE, FIStructE
D Kerr	CEng, MICE
J W Lloyd	BSc(Eng), MICE
R J Pannett	CEng, MICE
J Read	MA, CEng, FICE
D C Spooner	BSc, PhD, MInstP, CPHYS
P D Stebbings	BSc(Eng), CEng, FICE
D Waite	CEng, FIStructE, MICE, AWeldI
M J C Wilford	CEng, MIStructE

A British Standard does not purport to include all the necessary provisions of a contract. Users of British Standards are responsible for their correct application.

Compliance with a British Standard does not of itself confer immunity from legal obligations.

Summary of pages

This document comprises a front cover, an inside front cover, pages i to vi, pages 1 to 84, an inside back cover and a back cover.

This standard has been updated (see copyright date) and may have had amendments incorporated. This will be indicated in the amendment table on the inside front cover.

Section 1. General

1.1 Scope

This Part of BS 6349 provides guidance on the design and construction of breakwaters.

Breakwaters are structures which provide protection to harbours and structures such as sea intakes against wave action and this Part of BS 6349 gives guidance on the main types of breakwater. Floating breakwaters are not included.

Coastal structures such as groynes, revetments and training walls are not covered, although certain aspects of design may be found to be relevant to them.

NOTE The titles of the publications referred to in this British Standard are listed on the inside back cover. The numbers in square brackets used throughout the text relate to the bibliographic references given in Appendix A.

1.2 Definitions

For the purposes of this Part of BS 6349, the definitions in BS 6349-1 apply together with the following.

1.2.1 rubble mound breakwater

a structure composed primarily of rocks dumped or placed upon the sea bed. An outer layer, or layers, of more massive rock or precast concrete units provides an armour layer to protect the less massive rock core from wave attack. A concrete crest structure which contributes to the function of the breakwater may be constructed on the mound

NOTE Examples of rubble mound breakwaters are shown in Figure 6.

1.2.2

vertical face breakwater

a breakwater in which wave attack is resisted primarily by a vertically faced structure extending directly from sea bed level

NOTE Examples of vertical face breakwaters are shown in Figure 18.

1.2.3

composite breakwater

a submerged rubble mound foundation or breakwater surmounted by a vertically faced structure projecting above sea level

Section 2. Layout planning

2.1 General

This section considers the planning of breakwater layout to achieve the harbour protection function. Guidance is given on navigational aspects, wave penetration, environmental effects and data collection.

2.2 Harbour layout

2.2.1 General

Wave energy can enter a harbour by penetration through the entrance between the breakwaters, by overtopping and by transmission through permeable breakwater structures. The types of breakwater structures used and their detailed design therefore influence the wave climate within the harbour, and for this reason breakwater layout cannot be entirely separated from design of the structures; an iterative process is often needed in determining the optimum solution.

Port planning requirements for the number, size and locations of cargo handling facilities will determine the overall dimensions of the harbour. These considerations are outside the scope of this Part of BS 6349. References are given in **2.1.1** of BS 6349-2:1988.

Breakwaters can also be required to protect an approach channel from littoral drift or to stabilize or train the alignment of a tidal entrance.

The siting and layout of the breakwaters to provide the necessary degree of protection to the harbour are determined by the need for the following:

- a) sheltered conditions for ships at berth or anchorage;
- b) manoeuvring and turning areas for ships within the harbour;
- c) an adequate stopping distance for ships entering the harbour entrance at a safe navigating speed.

2.2.2 Navigational aspects

Criteria for depth and width of approach channels are given in clause **18** of BS 6349-1:1984, criteria for manoeuvring inside harbours are given in clause **19** of BS 6349-1:1984, and criteria for the acceptable wave conditions for moored boats and ships are given in clauses **30** and **31** of BS 6349-1:1984. Suitable conditions should also be provided to enable tugs and mooring vessels to work satisfactorily. The presence of the breakwaters produces special navigation conditions at the harbour entrance. Currents can be generated across a harbour entrance as a result of the deflection of currents and by wave diffraction around the head of the breakwater. Wave reflections can occur from the breakwaters, and as a vessel moves from the open sea to sheltered water there are significant changes in environmental conditions affecting the vessel over a short distance.

A wide harbour entrance, to ease navigation, conflicts with the objective of limiting wave penetration, and some compromise is needed. Navigation is not always possible in exceptional wind and wave conditions.

The advice of experienced mariners is essential in determining the optimum layout of breakwaters at the harbour entrance, taking into account the economic aspects of cost and any limits on navigation and port operation.

Models and ship simulators, described in clause **18** of BS 6349-1:1984, can be valuable aids to the planning of the harbour entrance and breakwater layout.

2.2.3 Wave penetration

The most important determinant of harbour response is wave penetration through the entrance. It is first necessary to establish wave conditions just outside the entrance, then to determine the effect of the entrance in permitting waves to enter the harbour and finally to determine the response at critical positions within the harbour.

Guidance on establishing the offshore wave climate is given in clause 22 of BS 6349-1:1984, and methods of deriving inshore wave conditions at the harbour entrance are given in clause 23 of BS 6349-1:1984. Wave direction is important and, whilst the greatest shelter to the harbour area should be provided against the largest waves, lesser wave conditions from different directions can be important in designing the layout.

Consideration should be given to fairly frequent wave conditions as well as to rare events, as the former can affect down-time and economy of operation whereas the latter will affect safety. Acceptable limits on ship movement are given in **31.4** of BS 6349-1:1984.