Eurocode 3: Design of steel structures —

Part 1-2: General rules — Structural fire design

BS EN 1993-1-2:2005

Incorporating Corrigenda December 2005, September 2006 and March 2009

ICS 13.220.50; 91.010.30; 91.080.10

NO COPYING WITHOUT BSI PERMISSION EXCEPT AS PERMITTED BY COPYRIGHT LAW

National foreword

This British Standard is the UK implementation of EN 1993-1-2:2005, incorporating corrigenda December 2005 and March 2009. It supersedes DD ENV 1993-1-2:2001, which is withdrawn.

The start and finish of text introduced or altered by corrigendum is indicated in the text by tags. Tags indicating changes to CEN text carry the number of the CEN corrigendum. For example, text altered by December 2005 corrigendum is indicated by AC_1 (AC1).

The structural Eurocodes are divided into packages by grouping Eurocodes for each of the main materials: concrete, steel, composite concrete and steel, timber, masonry and aluminium; this is to enable a common date of withdrawal (DOW) for all the relevant parts that are needed for a particular design. The conflicting national standards will be withdrawn at the end of the co-existence period, after all the EN Eurocodes of a package are available.

Following publication of the EN, there is a period allowed for national calibration during which the National Annex is issued, followed by a co-existence period of a maximum three years. During the co-existence period Member States are encouraged to adapt their national provisions. At the end of this co-existence period, the conflicting parts of national standard(s) will be withdrawn.

In the UK, the primary corresponding national standard is:

BS 5950-8:2003, Structural use of steelwork in building. Code of practice for fire resistant design

BS EN 1993-1-2 supersedes BS 5950-8, which will be withdrawn by March 2010.

The UK participation in its preparation was entrusted by Technical Committee B/525, *Building and civil engineering structures*, to Subcommittee B/525/31, *Structural use of steel*.

A list of organizations represented on this subcommittee can be obtained on request to its secretary.

Where a normative part of this EN allows for a choice to be made at the national level, the range and possible choice will be given in the normative text as Recommended Values, and a note will qualify it as a Nationally Determined Parameter (NDP). NDPs can be a specific value for a factor, a specific level or class, a particular method or a particular application rule if several are proposed in the EN.

y	Amd. No.	Date	Comments
,	16290 Corrigendum No. 1	June 2006	Implementation of CEN corrigendum December 2005
	16572 Corrigendum No. 2	29 September 2006	Revision of national foreword and supersession details
		28 February 2010	Implementation of CEN corrigendum March 2009

Amendments/corrigenda issued since publication

This British Standard, was published under the authority of the Standards Policy and Strategy Committee on 29 April 2005

© BSI 2010

ISBN 978 0 580 66390 1

To enable EN 1993-1-2 to be used in the UK, the NDPs have been published in a National Annex, which has been issued separately by BSI.

This publication does not purport to include all the necessary provisions of a contract. Users are responsible for its correct application.

Compliance with a British Standard cannot confer immunity from legal obligations.

EUROPEAN STANDARD NORME EUROPÉENNE EUROPÄISCHE NORM

EN 1993-1-2

April 2005

ICS 13.220.50; 91.010.30; 91.080.10

Supersedes ENV 1993-1-2:1995 Incorporating Corrigendum December 2005

English version

Eurocode 3: Design of steel structures - Part 1-2: General rules -Structural fire design

Eurocode 3: Calcul des structures en acier - Partie 1-2: Règles générales - Calcul du comportement au feu Eurocode 3: Bemessung und Konstruktion von Stahlbauten - Teil 1-2: Allgemeine Regeln - Tragwerksbemessung für den Brandfall

This European Standard was approved by CEN on 23 April 2004.

CEN members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the Central Secretariat or to any CEN member.

This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CEN member into its own language and notified to the Central Secretariat has the same status as the official versions.

CEN members are the national standards bodies of Austria, Belgium, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Slovakia, Slovenia, Spain, Sweden, Switzerland and United Kingdom.

EUROPEAN COMMITTEE FOR STANDARDIZATION COMITÉ EUROPÉEN DE NORMALISATION EUROPÄISCHES KOMITEE FÜR NORMUNG

Management Centre: rue de Stassart, 36 B-1050 Brussels

© 2005 CEN All rights of exploitation in any form and by any means reserved worldwide for CEN national Members.

Ref. No. EN 1993-1-2:2005: E

BS EN 1993-1-2:2005 EN 1993-1-2:2005 (E)

Contents

Page

Foreword4					
1.	Gen	eral	9		
11		Scope	9		
1.2)	Normative references	.10		
1.3	3	Assumptions	.11		
1.4	1	Distinction between principles and application rules	.11		
1.5	5	Terms and definitions	.11		
1.6	5	Symbols	.12		
2	Basi	s of design	.16		
2.1		Requirements	.16		
2.1	2.1.1	Basic requirements	.16		
	2.1.2	Nominal fire exposure	.16		
	2.1.3	Parametric fire exposure	.16		
2.2	2	Actions	.17		
2.3	3	Design values of material properties	.17		
2.4	1	Verification methods	.17		
	2.4.1	General	.17		
	2.4.2	Member analysis	.18		
	2.4.3	Analysis of part of the structure	.19		
	2.4.4	Global structural analysis	.20		
3	Mat	erial properties	.20		
3.1	l	General	.20		
3.2	2	Mechanical properties of carbon steels	.20		
	3.2.1	Strength and deformation properties	.20		
	3.2.2	Unit mass	.20		
3.3	3	Mechanical properties of stainless steels	.23		
3.4	1	Thermal properties	.23		
	3.4.1	Carbon steels	.23		
	3.4.2	Stainless steels	.26		
	3.4.3	Fire protection materials	.26		
4	Stru	ctural fire design	.27		
4.1	l	General	.27		
4.2	2	Simple calculation models	.27		
	4.2.1	General	.27		
	4.2.2	Classification of cross-sections	.28		
	4.2.3	Resistance	.28		
	4.2.4	Critical temperature	.30		
13	4.∠ ≀	Advanced calculation models	.57		
т	, 431	General	43		
	4.3.2	Thermal response	.43		
	4.3.3	Mechanical response	.43		
	4.3.4	Validation of advanced calculation models	.44		
Anne	ex A	[normative] Strain-hardening of carbon steel at elevated temperatures	.45		
Anne	ex B	[normative] Heat transfer to external steelwork	.47		
Anne	ex C	[informative] Stainless steel	.65		
	5				
Anne	ex D	[informative] Joints	.73		

BS EN 1993-1-2:2005 EN 1993-1-2:2005 (E)

Annex E	[informative] Class 4 cross-sections	6
---------	--------------------------------------	---

Foreword

This European Standard EN 1993, Eurocode 3: Design of steel structures, has been prepared by Technical Committee CEN/TC250 « Structural Eurocodes », the Secretariat of which is held by BSI. CEN/TC250 is responsible for all Structural Eurocodes.

This European Standard shall be given the status of a National Standard, either by publication of an identical text or by endorsement, at the latest by October 2005, and conflicting National Standards shall be withdrawn at latest by March 2010.

This Eurocode supersedes ENV 1993-1-2.

According to the CEN-CENELEC Internal Regulations, the National Standard Organizations of the following countries are bound to implement these European Standard: Austria, Belgium, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Slovakia, Slovenia, Spain, Sweden, Switzerland and United Kingdom.

Background to the Eurocode programme

In 1975, the Commission of the European Community decided on an action programme in the field of construction, based on article 95 of the Treaty. The objective of the programme was the elimination of technical obstacles to trade and the harmonization of technical specifications.

Within this action programme, the Commission took the initiative to establish a set of harmonized technical rules for the design of construction works which, in a first stage, would serve as an alternative to the national rules in force in the Member States and, ultimately, would replace them.

For fifteen years, the Commission, with the help of a Steering Committee with Representatives of Member States, conducted the development of the Eurocodes programme, which led to the first generation of European codes in the 1980s.

In 1989, the Commission and the Member States of the EU and EFTA decided, on the basis of an agreement¹ between the Commission and CEN, to transfer the preparation and the publication of the Eurocodes to CEN through a series of Mandates, in order to provide them with a future status of European Standard (EN). This links *de facto* the Eurocodes with the provisions of all the Council's Directives and/or Commission's Decisions dealing with European standards (*e.g.* the Council Directive 89/106/EEC on construction products - CPD - and Council Directives 93/37/EEC, 92/50/EEC and 89/440/EEC on public works and services and equivalent EFTA Directives initiated in pursuit of setting up the internal market).

The Structural Eurocode programme comprises the following standards generally consisting of a number of Parts:

EN 1990	Eurocode 0:	Basis of Structural Design
EN 1991	Eurocode 1:	Actions on structures
EN 1992	Eurocode 2:	Design of concrete structures
EN 1993	Eurocode 3:	Design of steel structures
EN 1994	Eurocode 4:	Design of composite steel and concrete structures
EN 1995	Eurocode 5:	Design of timber structures
EN 1996	Eurocode 6:	Design of masonry structures
EN 1997	Eurocode 7:	Geotechnical design
EN 1998	Eurocode 8:	Design of structures for earthquake resistance
EN 1999	Eurocode 9:	Design of aluminium structures

¹ Agreement between the Commission of the European Communities and the European Committee for Standardisation (CEN) concerning the work on EUROCODES for the design of building and civil engineering works (BC/CEN/03/89).

Eurocode standards recognize the responsibility of regulatory authorities in each Member State and have safeguarded their right to determine values related to regulatory safety matters at national level where these continue to vary from State to State.

Status and field of application of eurocodes

The Member States of the EU and EFTA recognize that Eurocodes serve as reference documents for the following purposes :

- as a means to prove compliance of building and civil engineering works with the essential requirements of Council Directive 89/106/EEC, particularly Essential Requirement N°1 – Mechanical resistance and stability – and Essential Requirement N°2 – Safety in case of fire;
- as a basis for specifying contracts for construction works and related engineering services;
- as a framework for drawing up harmonized technical specifications for construction products (ENs and ETAs)

The Eurocodes, as far as they concern the construction works themselves, have a direct relationship with the Interpretative Documents² referred to in Article 12 of the CPD, although they are of a different nature from harmonized product standards³. Therefore, technical aspects arising from the Eurocodes work need to be adequately considered by CEN Technical Committees and/or EOTA Working Groups working on product standards with a view to achieving full compatibility of these technical specifications with the Eurocodes.

The Eurocode standards provide common structural design rules for everyday use for the design of whole structures and component products of both a traditional and an innovative nature. Unusual forms of construction or design conditions are not specifically covered and additional expert consideration will be required by the designer in such cases.

National Standards implementing Eurocodes

The National Standards implementing Eurocodes will comprise the full text of the Eurocode (including any annexes), as published by CEN, which may be preceded by a National title page and National foreword, and may be followed by a National annex.

The National annex may only contain information on those parameters which are left open in the Eurocode for national choice, known as Nationally Determined Parameters, to be used for the design of buildings and civil engineering works to be constructed in the country concerned, *i.e.* :

- values and/or classes where alternatives are given in the Eurocode,
- values to be used where a symbol only is given in the Eurocode,
- country specific data (geographical, climatic, etc.), *e.g.* snow map,
- the procedure to be used where alternative procedures are given in the Eurocode.

It may contain

- decisions on the application of informative annexes,
- references to non-contradictory complementary information to assist the user to apply the Eurocode.

² According to Art. 3.3 of the CPD, the essential requirements (ERs) shall be given concrete form in interpretative documents for the creation of the necessary links between the essential requirements and the mandates for harmonized ENs and ETAGs/ETAs.

³ According to Art. 12 of the CPD the interpretative documents shall :

a) give concrete form to the essential requirements by harmonizing the terminology and the technical bases and indicating classes or levels for each requirement where necessary;

b) indicate methods of correlating these classes or levels of requirement with the technical specifications, *e.g.* methods of calculation and of proof, technical rules for project design, etc. ;

c) serve as a reference for the establishment of harmonized standards and guidelines for European technical approvals.

The Eurocodes, *de facto*, play a similar role in the field of the ER 1 and a part of ER 2.