BS 1377-2:2022

BSI Standards Publication

BS 1377-2 — Methods of test for soils for civil engineering purposes

Part 2: Classification tests and determination of geotechnical properties

Publishing and copyright information

The BSI copyright notice displayed in this document indicates when the document was last issued.

© The British Standards Institution 2022

Published by BSI Standards Limited 2022

ISBN 978 0 539 15710 9

ICS 93.020

The following BSI references relate to the work on this document: Committee reference B/526/3 Draft for comment 21/30427944 DC

Amendments/corrigenda issued since publication

Date Text affected

© THE BRITISH STANDA

Contents		Page
	Foreword	v
1	Scope	1
2	Normative references	1
3	Terms and definitions	2
4	Determination of water content	2
4.1	Oven-drying method	2
4.2	Method for saturation water content of chalk	3
5	Determination of liquid limit	3
5.1	General	4
5.2	Cone penetrometer method (definitive method)	4
5.3	One-point cone penetrometer method	4
	Table 1 — Factors for one-point cone penetrometer liquid limit test	5
5.4	Casagrande apparatus method	5
5.5	One-point Casagrande method	6
6	Determination of plastic limit and plasticity index	6
6.1	General	6
6.2	Additional parameters	7
7	Determination of shrinkage characteristics–Linear shrinkage	7
7.1	General	7
7.2	Apparatus	7
	Figure 1 — Mould for linear shrinkage test	8
7.3	Preparation of apparatus	8
7.4	Procedure	8
7.5	Calculations and expression of results	9
7.6	Test report	9
8	Determination of density	9
9	Determination of particle density	10
9.1	General	10
9.2	Gas jar method	10
10	Determination of particle size distribution	12
11	Determination of dry density/water content relationship	12
11.1	General	12
	Figure 2 — Dry density/water content relationship curve	13
	Table 2 — Summary of compaction procedures	14
11.2	Preparation of samples for compaction tests	14
	Table 3 — Summary of sample preparation procedures	15
	Figure 3 — Grading limits relating to specimen preparation procedures for compaction tests	16
	Figure 4 — Flow chart representing specimen preparation methods for compaction tests	16
11.3	Compaction method using 2.5 kg rammer with 1 L mould	19
	Figure 5 — Mould for compaction test (1 L mould)	20
	Figure 6 — 2.5 kg rammer for compaction test	21
11.4	Compaction method using 2.5 kg rammer with CBR mould	24
11.5	Compaction method using 4.5 kg rammer with 1 L mould	25
	Figure 7 — 4.5 kg rammer for compaction test	26
11.6	Method using 4.5 kg rammer with CBR mould	28
11.7	Compaction method using vibrating hammer	29
	Figure 8 — Tampers for vibrating hammer compaction tests	30
	Table 4 — Grading for calibration sand	31

12	Determination of maximum and minimum dry densities for coarse soils	34
12.1	Determination of maximum density of sands	34
12.2	Maximum density of gravelly soils	37
12.3	Minimum density of sands	39
12.4	Minimum density of gravelly soils	40
12.5	Derivation of density index	42
13	Determination of moisture condition value (MCV)	42
13.1	General	42
13.2	Apparatus	42
	Figure 9 — Moisture condition apparatus	43
13.3	Checking the moisture condition apparatus	45
13.4	Determination of the MCV of a specimen of soil at its natural water content	45
	Figure 10 — Relationship between change in penetration and number of blows	47
	Figure 11 — Alternative type of relationship between change in penetration and number of blows	47
13.5	Determination of the MCV/water content relation of a soil	48
13.6	Rapid assessment of whether a soil is stronger than a precalibrated standard	49
14	Determination of chalk crushing value (CCV)	50
14.1	General	50
14.2	Apparatus	50
14.3	Checking the moisture condition apparatus	51
14.4	Determination of the chalk crushing value (CCV)	51
15	Determination of California Bearing Ratio (CBR)	52
15.1	General	53
15.2	Preparation of test specimen	53
	Figure 12 — Flow chart representing specimen preparation methods for the CBR test	54
	Figure 13 — Cylindrical mould for the determination of the CBR	55
	Figure 14 — Plug and collar extension for use with cylindrical mould for the determination	
450	of the CBR	56
15.3	Soaking	59
1 - 1	Figure 15 — Apparatus for measuring the swelling of a specimen auring soaking for the CBR test	60
15.4	Figure 16 Concerned arrangement of annaratus for the CBD test	61
155	Colculation and plotting	64
15.5	Calculation and plotting	04 65
	Figure 17 — Typical CDR test result curves (see 13.3.1.2)	67
	Table 5 Standard force penetration relationships for 100% and other CDK values	67
15.6	Table 5 — Standard Jorce-penetration relationships Jor 100% CBK	68
15.0	Determination of one-dimensional consolidation properties	60
16.1	Test method	69
16.2	Test results	69
10.2	Determination of swelling and collanse characteristics	70
171	Ceneral	70
17.2	Annaratus	70
17.3	Measurement of swelling pressure	70
17.4	Measurement of swelling	71
17.5	Measurement of settlement on saturation	73
18	Determination of dispersibility	74
18.1	Pinhole method	74
	Figure 19 — Section of pinhole test apparatus	75
	Table 6 — Typical limiting rates of flow imposed by the apparatus	77

	Figure 20 — Flowchart for pinhole test procedure	78
	Table 7 — Classification of soils from pinhole test data	79
18.2	Crumb method	80
18.3	Dispersion method	81
	Figure 21 — Typical results from dispersion (double hydrometer) test	82
19	Determination of frost heave	83
19.1	General	83
19.2	Preparation of test specimens	83
19.3	Test procedure	84
20	Determination of consolidation properties using a hydraulic cell	84
20.1	General	84
	Figure 22 — Drainage and loading conditions for consolidation tests in hydraulic cells	85
20.2	Apparatus	86
	Figure 23 — Arrangement of hydraulic cell for vertical drainage consolidation [test type (a)]	88
	Figure 24 — Arrangement of hydraulic cell for radial drainage to centre and optional	
	permeability stage	89
	Figure 25 — Arrangement for load calibration of diaphragm	95
20.3	Preparation of specimens	98
20.4	Cell assembly	102
20.5	Procedure for consolidation test with one-way vertical drainage	105
	Figure 26 — Derivation of $t_{}$ from log time curves	113
	Figure 27 — Derivation of t_{-} and t_{-} from power function curves	114
	Figure 28 — Temperature correction curve	115
20.6	Procedure for consolidation test with two-way vertical drainage	117
20.7	Procedure for consolidation test with drainage radially outwards	118
20.8	Procedure for consolidation test with drainage radially inwards	121
21	Determination of permeability in a hydraulic consolidation cell	124
21.1	General	125
21.2	Apparatus for preparation of specimens	125
21.3	Apparatus for permeability test	125
21.4	Calibration of apparatus	126
21.5	Preparation and checking of apparatus	127
21.6	Preparation of test specimen	127
21.7	Assembly of cell	128
21.8	Test procedures	128
21.9	Calculations	130
21.10	Test report	131
22	Determination of isotropic consolidation properties using a triaxial cell	132
22.1	Test method	132
22.2	Calculations	132
22.3	Test report	134
23	Determination of permeability	135
24	Determination of shear strength by the laboratory vane method	135
24.1	General	135
24.2	Apparatus	135
	Figure 29 — Laboratory vane apparatus	136
24.3	Procedure	137
24.4	Calculations	138
24.5	Test report	139
2.5	Determination of shear strength by direct shear (shearbox methods)	139
		_0,

25.1	Shearbox methods	139
25.2	Determination of shear strength by the small shearbox apparatus	140
25.3	Determination of shear strength by the large shearbox apparatus	140
26	Determination of residual strength using the small ring shear apparatus	141
26.1	Test method	141
26.2	Test conditions	141
26.3	Test report	141
27	Determination of unconfined compressive strength	141
27.1	Test method	141
27.2	Test report	142
28	Unconsolidated undrained triaxial test	142
28.1	Type of test	142
28.2	Test conditions	142
28.3	Test report	142
29	Consolidated-undrained triaxial compression test with measurement of pore pressure	143
29.1	Test procedure	143
29.2	Test conditions	144
29.3	Test report	144
30	Consolidated-drained triaxial compression test with measurement of volume change	144
30.1	Test procedure	144
30.2	Test conditions	145
30.3	Test report	145
Annex A	(informative) Example forms	146
	Figure A.1 — Example data sheet	146
	Figure A.2 — Example recording form	147
	Bibliography	148

Summary of pages

This document comprises a front cover, an inside front cover, pages I to VI, pages 1 to 148, an inside back cover and a back cover.

IV © THE BRITISH STA

Foreword

Publishing information

This part of BS 1377 is published by BSI Standards Limited, under licence from The British Standards Institution, and came into effect on 31 March 2022. It was prepared by Subcommittee B/526/3, *Ground investigation and ground testing*, under the authority of Technical Committee B/526, *Geotechnics*. A list of organizations represented on these committees can be obtained on request to their committee manager.

Supersession

This part of BS 1377 supersedes <u>BS 1377-2:1990</u>, <u>BS 1377-4:1990</u>, <u>BS 1377-5:1990</u>, <u>BS 1377-6:1990</u> and <u>BS 1377-7:1990</u>, which are withdrawn.

Relationship with other publications

BS 1377 is published in the following parts:

- Part 1: General requirements and sample preparation
- Part 2: Classification tests and determination of geotechnical properties (this document)
- Part 3: Chemical and electrochemical tests
- Part 9: In-situ tests

<u>BS 1377-1</u> provides general information relating to the tests, common calibration and specification requirements and general requirements for testing laboratories and fieldwork. This information is required for tests for which no BS EN ISO standard is available. <u>BS EN ISO 17892</u> standards include specific requirements for sample preparation, equipment maintenance and calibration for each test which take precedence.

<u>BS 1377-3</u> describes test methods for determining the amount of chemical substances in soil and groundwater.

This part of BS 1377 includes reference to BS EN ISO 17892 (all parts) for the relevant test and provides non-contradictory complementary information on the test methods.

Information about this document

This publication can be withdrawn, revised, partially superseded or superseded. Information regarding the status of this publication can be found in the Standards Catalogue on the BSI website at <u>bsigroup.com/standards</u>, or by contacting the Customer Services team.

Where websites and webpages have been cited, they are provided for ease of reference and are correct at the time of publication. The location of a webpage or website, or its contents, cannot be guaranteed.

This part of BS 1377 consolidates the tests included in <u>BS 1377-2:1990</u>, <u>BS 1377-4:1990</u>, <u>BS 1377-5:1990</u>, <u>BS 1377-6:1990</u> and <u>BS 1377-7:1990</u> into one document as follows:

- <u>BS 1377-2:1990</u>, Part 2: Classification tests
- <u>BS 1377-4:1990</u>, Part 4: Compaction-related tests
- <u>BS 1377-5:1990</u>, Part 5: Compressibility, permeability and durability tests
- <u>BS 1377-6:1990</u>, Part 6: Consolidation and permeability tests in hydraulic cells and with pore pressure measurement

RIGHTS RESERVED V

- <u>BS 1377-7:1990</u>, Part 7: Shear strength tests (total stress)
- <u>BS 1377-8:1990</u>, Part 8: Shear strength tests (effective stress)

The following tests that were included in BS 1377:1990 have been withdrawn:

BS 1377-2:1990, Clause 6.3 Volumetric shrinkage test (definitive method)

BS 1377-2:1990, Clause 6.4 Volumetric shrinkage test (subsidiary method)

BS 1377-7:1990, Clause 9 Multistage unconsolidated undrained triaxial test

Presentational conventions

The provisions of this standard are presented in roman (i.e. upright) type. Its methods are expressed as a set of instructions, a description, or in sentences in which the principal auxiliary verb is "shall".

Commentary, explanation and general informative material is presented in smaller italic type, and does not constitute a normative element.

Where words have alternative spellings, the preferred spelling of the Shorter Oxford English Dictionary is used (e.g. "organization" rather than "organisation").

Contractual and legal considerations

This publication has been prepared in good faith, however, no representation, warranty, assurance or undertaking (express or implied) is or will be made, and no responsibility or liability is or will be accepted by BSI in relation to the adequacy, accuracy, completeness or reasonableness of this publication. All and any such responsibility and liability is expressly disclaimed to the full extent permitted by the law.

This publication is provided as is, and is to be used at the recipient's own risk.

The recipient is advised to consider seeking professional guidance with respect to its use of this publication.

This publication is not intended to constitute a contract. Users are responsible for its correct application.

Compliance with a British Standard cannot confer immunity from legal obligations.

1 Scope

This part of BS 1377 specifies methods of test for the classification of soil and for the determination of geotechnical properties of soils in the laboratory.

Most of these tests are required for the determination of geotechnical behaviour of soils in accordance with BS EN 1997 (all parts) and <u>BS 5930</u>.

This part of BS 1377 includes:

- a) common laboratory tests required for the classification of soils;
- b) determination of compaction characteristics of soils for earthworks, permeability, compressibility and erodibility; and
- c) determination of shear strength of soils in terms of both total and effective stresses.

NOTE Where EN ISO test methods are available, these are normatively referenced and commentary provided to assist in their application.

<u>BS 1377-1</u> specifies requirements that include details of sample preparation and equipment calibration that are relevant to tests described in this part of BS 1377, unless otherwise detailed in the referenced <u>BS EN ISO 17892</u> standard.

2 Normative references

<u>BS 1377-1:2016</u>, Methods of test for soils for civil engineering purposes – Part 1: General requirements and sample preparation

BS 812-124:2009, Testing aggregates – Part 124: Method for determination of frost heave

BS EN ISO 17892-1:2014, Geotechnical investigation and testing – Laboratory testing of soil – Part 1: Determination of water content

BS EN ISO 17892-2:2014, Geotechnical investigation and testing – Laboratory testing of soil – Part 2: Determination of bulk density

BS EN ISO 17892-3, Geotechnical investigation and testing – Laboratory testing of soil – Part 3: Determination of particle density

<u>BS EN ISO 17892-4:2016</u>, Geotechnical investigation and testing – Laboratory testing of soil – Part 4: Determination of particle size distribution

<u>BS EN ISO 17892-5:2017</u>, Geotechnical investigation and testing – Laboratory testing of soil – Part 5: Incremental loading oedometer test

<u>BS EN ISO 17892-7:2018</u>, Geotechnical investigation and testing – Laboratory testing of soil – Part 7: Unconfined compression test

<u>BS EN ISO 17892-8:2018</u>, Geotechnical investigation and testing – Laboratory testing of soil – Part 8: Unconsolidated undrained triaxial test

BS EN ISO 17892-9:2018, Geotechnical investigation and testing – Laboratory testing of soil – Part 9: Consolidated triaxial compression tests on water saturated soils

<u>BS EN ISO 17892-10:2018</u>, Geotechnical investigation and testing – Laboratory testing of soil – Part 10: Direct shear tests

<u>BS EN ISO 17892-11</u>, Geotechnical investigation and testing – Laboratory testing of soil – Part 11: Permeability tests BS EN ISO 17892-12:2018+A1:2021, Geotechnical investigation and testing – Laboratory testing of soil – Part 12: Determination of liquid and plastic limits

3 Terms and definitions

For the purposes of this part of BS 1377, the terms and definitions given in BS 1377-1 apply.

4 Determination of water content

COMMENTARY ON CLAUSE 4

Water is present in most naturally occurring soils. The amount of water, expressed as a proportion by mass of the dry solid particles, previously known as the moisture content, has a profound effect on soil behaviour. In this context, a soil is "dry" when no further water can be removed at a temperature not exceeding 110 °C.

Water content is required as a guide to classification of natural soils and as a control criterion in recompacted soils and is measured on samples used for most field and laboratory tests. The oven-drying method is the definitive procedure used in standard laboratory practice.

In some situations, e.g. in the field control of earthworks, a rapid method of measurement of water content might be required and a number of rapid methods are available, such as the sand bath method, the microwave oven-drying method and the calcium carbide method. These methods are not necessarily appropriate for all soil types and when used on a particular soil, the oven-drying method could also be used as a check.

A procedure for determining the water content at full saturation of chalk is described in <u>4.2</u>.

4.1 Oven-drying method

Water content shall be determined in accordance with BS EN ISO 17892-1.

NOTE 1 This method covers the determination of the water content of a specimen of soil as a percentage of its dry mass.

NOTE 2 A microwave oven should not be used for the determination of water content by the definitive method for soils containing clay or organic matter or some other minerals due to the difficulty maintaining the temperature of the soil below 110 °C before all the water is removed. Higher temperatures than this can alter the chemical composition of some minerals, including some clay.

NOTE 3 Certain soils contain gypsum, which on heating, loses its water of crystallization. The water content determined by this method is affected by approximately 0.2% for each 1% of gypsum. If it is suspected that gypsum is present in the soil the water content samples should be dried at no more than 50 °C and possibly for a longer time. The presence of gypsum might be in the field description or visible in the sample and can be identified by heating a small quantity of soil on a metal plate. Grains of gypsum turn white within a few minutes, whereas most other mineral grains remain unaltered.

NOTE 4 If the water content is to be related to the Atterberg limits, e.g. for determining the liquidity or consistency index, and the soil contains material retained on a 425 μ m sieve, the measured water content, w (%), can be corrected to give the equivalent water content, w < 0.425 (%), of the fraction passing the 425 μ m sieve, as described in BS EN ISO 17892-12:2018+A1:2021, Annex B.

NOTE 5 For further information on testing saline samples refer to BS EN ISO 17892-1:2014, Annex C.