

BSI Standards Publication

Maritime works

Part 2: Code of practice for the design of quay walls, jetties and dolphins

Publishing and copyright information

The BSI copyright notice displayed in this document indicates when the document was last issued.

© The British Standards Institution 2019

Published by BSI Standards Limited 2019

ISBN 978 0 580 98478 5

ICS 47.020.99; 93.140

The following BSI references relate to the work on this document: Committee reference $\mbox{CB}/502$

Draft for comment 19/30360217 DC

Amendments/corrigenda issued since publication

Date Text affected

© THE BRITISH STANDA

Contents		
	Foreword	iv
1	Scope	1
2	Normative references	1
3	Terms, definitions and symbols	2
4	General design of quay walls, jetties and dolphins	5
4.1	General	5
4.2	Design situations	10
4.3	Actions	11
4.4	Deflection control and deformations	14
	Table 1 — Operational deflection limits for maritime structures other than flexible dolphins	15
4.5	Choice of structure	15
4.6	Construction tolerances	18
4.7	Environmental impact	20
4.8	Control of external water effects	20
4.9	Specific recommendations for quay walls	21
4.10	Durability	24
4.11	Services and equipment	25
	Figure 1 — Examples of crane rail foundation arrangements	27
5	Embedded retaining walls	28
5.1	General	28
5.2	Suitability of embedded retaining wall structures	28
5.3	Materials for embedded retaining walls	29
	Figure 2 — Soldier-piled wall: typical cross-section	31
5.4	Bending resistance of wall	31
5.5	Effects of actions on embedded retaining walls	32
5.6	Design of embedded retaining wall structures	35
	Figure 3 — Examples of anchored embedded retaining wall structures	36
	Figure 4 — Effects of flexibility of single-anchored or propped and cantilever embedded walls on	
	earth pressure and resistance	38
	Figure 5 — Location of anchorages in relation to failure planes in retained fill	39
	Figure 6 — Cantilevered embedded retaining wall structure	40
	Figure 7 — Distribution of active earth pressure and passive earth pressures on cantilevered	
	embedded retaining wall structures	41
	Figure 8 — Embedded retaining walls with relieving platform	42
	Figure 9 — Pressure distribution on embedded retaining wall in front of relieving platform	43
	Figure 10 — Embedded retaining wall with auxiliary anchorage: failure planes	47
	Figure 11 — Examples of deadman anchorages	48
	Figure 12 — Examples of cantilever anchorages	49
	Figure 13 — Example of a raking pile anchorage	50
	Figure 14 — Examples of ground anchors	51
	Figure 15 — Examples of anchoring arrangements at corners	52
5.7	Toe level	53
5.8	Construction sequence	53
5.9	Services and crane tracks	54
6	Gravity walls	55
6.1	Design of gravity walls	55
6.2	Concrete blockwork walls	59
	Figure 16 — Angle of friction on virtual back of blockwork wall	61

6.3	Precast reinforced concrete walls	62
	Figure 17 — Precast reinforced concrete wall	63
6.4	Concrete caissons	64
	Figure 18 — Example of capping arrangement for a concrete caisson	64
	Figure 19 — Examples of joints between caissons	68
6.5	Cellular sheet pile structures	68
	Figure 20 — Examples of cellular sheet pile structures	69
	Figure 21 — Modes of failure of cellular sheet pile structure	71
	Figure 22 — Distribution of active earth pressure and passive earth resistance on a cellular	
	sheet pile structure	72
6.6	Double-wall sheet pile structures	73
	Figure 23 — Example of double-wall sheet pile structure	74
	Figure 24 — Distribution of active earth pressure and passive earth resistance on a double-wall	
	sheet pile structure	74
6.7	In-situ mass concrete walls	75
	Figure 25 — Example of in-situ mass concrete wall	76
6.8	In-situ reinforced concrete walls	76
	Figure 26 — Example of in-situ reinforced concrete wall	77
6.9	Gravity diaphragm walls	77
	Figure 27 — Example of gravity diaphragm wall	78
6.10	Monoliths	79
	Figure 28 — Example of monolith	80
	Figure 29 — Examples of joints between monoliths	81
7	Suspended deck structures	82
7.1	General	82
7.2	Suitability	82
7.3	Types of structure	83
	Table 2 — Pile systems for suspended deck structures	83
	Figure 30 — Examples of suspended deck structures	84
7.4	Overall stability	86
7.5	Earthworks at marginal quays	86
7.6	Types of bearing pile	87
7.7	Installation of piles	90
7.8	Choice of superstructure	91
7.9	Design approach	92
	Figure 31 — Typical fender support arrangements	93
7.10	Design of piles	96
	Figure 32 — Examples of pile/deck connections	97
8	Dolphins	100
8.1	Types of structure	100
	Figure 33 — Examples of flexible dolphins	102
	Figure 34 — Examples of rigid dolphins	103
8.2	Actions	103
8.3	Design of flexible dolphins	104
8.4	Design of rigid dolphins	105
8.5	Mooring equipment	106
8.6	Working space	106
9	Safety and access	106
9.1	General	106
9.2	Pontoons	107

BRITISH STANDARD BS 6349-2:2019

	Bibliography	122
	-	
	Figure B.1 — Access trestles	120
Annex B	(informative) Types of superstructure for suspended decks	119
	Figure A.1 — Concrete blockwork walls	117
Annex A	(informative) Types of construction for concrete blockwork walls	116
9.9	Life-saving equipment	115
9.8	Wearing surfaces and durability	114
9.7	Toe kerbs	114
9.6	Guard-rails	114
	Figure 36 — Typical emergency ladder dimensions	112
9.5	Ladders	110
	Figure 35 — Typical stairway arrangement for quay walls	110
9.4	Stairways for small vessel access	109
9.3	Walkways	108

Summary of pages

This document comprises a front cover, and inside front cover, pages i to vi, pages 1 to 125, an inside back cover and a back cover.

Foreword

Publishing information

This part of BS 6349 is published by BSI Standards Limited, under licence from The British Standards Institution, and came into effect on 30 June 2019. It was prepared by Technical Committee CB/502, *Maritime works*. A list of organizations represented on this committee can be obtained on request to its secretary.

Supersession

This part of BS 6349 supersedes BS 6349-2:2010, which is withdrawn.

Relationship with other publications

BS 6349 is published in the following parts:

- Part 1-1: General Code of practice for planning and design for operations;
- Part 1-2: General Code of practice for assessment of actions;
- Part 1-3: General Code of practice for geotechnical design;
- Part 1-4: General Code of practice for materials;
- Part 2: Code of practice for the design of quay walls, jetties and dolphins;
- Part 3: Code of practice for the design of shipyards and sea locks;
- Part 4: Code of practice for design of fendering and mooring systems;
- Part 5: Code of practice for dredging and land reclamation;
- Part 6: Design of inshore moorings and floating structures;
- Part 7: Guide to the design and construction of breakwaters;
- Part 8: Code of practice for the design of Ro-Ro ramps, linkspans and walkways.

Information about this document

This is a full revision of the standard, and introduces the following principal changes:

- reorganization of the clauses to consolidate common recommendations in <u>Clause 4</u>;
- rationalization arising from the publication of <u>BS 6349-1-2</u>, which now deals with the assessment of actions;
- deletion of the clause that consisted solely of a reference to BS 6349-8.

This publication can be withdrawn, revised, partially superseded or superseded. Information regarding the status of this publication can be found in the Standards Catalogue on the BSI website at bsigroup.com/standards, or by contacting the Customer Services team.

Where websites and webpages have been cited, they are provided for ease of reference and are correct at the time of publication. The location of a webpage or website, or its contents, cannot be guaranteed.

Use of this document

As a code of practice, this part of BS 6349 takes the form of guidance and recommendations. It should not be quoted as if it were a specification and particular care should be taken to ensure that claims of compliance are not misleading.

BRITISH STANDARD BS 6349-2:2019

Any user claiming compliance with this part of BS 6349 is expected to be able to justify any course of action that deviates from its recommendations.

It has been assumed in the preparation of this British Standard that the execution of its provisions will be entrusted to appropriately qualified and experienced people, for whose use it has been produced.

Presentational conventions

The provisions in this standard are presented in roman (i.e. upright) type. Its recommendations are expressed in sentences in which the principal auxiliary verb is "should".

Commentary, explanation and general informative material is presented in smaller italic type, and does not constitute a normative element.

Where words have alternative spellings, the preferred spelling of the Shorter Oxford English Dictionary is used (e.g. "organization" rather than "organisation").

Contractual and legal considerations

This publication does not purport to include all the necessary provisions of a contract. Users are responsible for its correct application.

Compliance with a British Standard cannot confer immunity from legal obligations.

BRITISH STANDARD BS 6349-2:2019

1 Scope

This part of BS 6349 provides recommendations and guidance on the design of quay walls, jetties and dolphins.

Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes provisions of this document1. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

BS 4211, Specification for permanently fixed ladders

BS 4592 (all parts), Industrial type flooring and stair treads

BS 5395-1, Stairs, ladders and walkways — Part 1: Code of practice for the design, construction and maintenance of straight stairs and winders

BS 6031, Code of practice for earthworks

BS 6349-1-1, Maritime works — Part 1-1: General — Code of practice for planning and design for operations

BS 6349-1-2, Maritime works — Part 1-2: General — Code of practice for assessment of actions

BS 6349-1-3, Maritime works — Part 1-3: General — Code of practice for geotechnical design

BS 6349-1-4, Maritime works — Part 1-4: General — Code of practice for materials

BS 6349-4, Maritime structures — Part 4: Code of practice for design of fendering and mooring systems

BS 6349-5, Maritime structures — Part 5: Code of practice for dredging and land reclamation

BS 8002, Code of practice for earth retaining structures

BS 8004, Code of practice for foundations

BS 8300-1, Design of an accessible and inclusive built environment — Part 1: External environment — Code of practice

BS EN 1537, Execution of special geotechnical work — Ground anchors

BS EN 1538, Execution of special geotechnical works — Diaphragm walls

BS EN 1990, Eurocode — Basis of structural design

BS EN 1991 (all parts), Eurocode 1 — Actions on structures²

BS EN 1992 (all parts), Eurocode 2 — Design of concrete structures

BS EN 1993 (all parts), Eurocode 3 — Design of steel structures²

BS EN 1994 (all parts), Eurocode 4 — Design of composite steel and concrete structures

BS EN 1995 (all parts), Eurocode 5 — Design of timber structures

BS EN 1996 (all parts), Eurocode 6 — Design of masonry structures

BS EN 1997 (all parts), Eurocode 7 — Geotechnical design²

BS EN 1998 (all parts), Eurocode 8 — Design of structures for earthquake resistance²

Documents that are referred to solely in an informative manner are listed in the Bibliography.

This part of BS 6349 gives dated references to BS EN 1991-1-1:2002, BS EN 1991-2:2003, BS EN 1993-1-1:2005, BS EN 1997-1:2004, and BS EN 1998-2:2005+A2:2011. It also gives an informative reference to BS EN 1993-5:2007.

BS EN 1999 (all parts), Eurocode 9 — Design of aluminium structures

BS EN 10210 (all parts), Hot finished structural hollow sections of non-alloy and fine grain steels

BS EN 10219 (both parts), Cold formed welded structural hollow sections of non-alloy and fine grain steels

BS EN 12063, Execution of special geotechnical work — Sheet pile walls

BS EN 12464-2, Lighting of work places — Part 2: Outdoor work places

BS EN ISO 14122 (all parts), Safety of machinery — Permanent means of access to machinery

BS EN ISO 19902, Petroleum and natural gas industries — Fixed steel offshore structures

BS ISO 12488-1, Cranes — Tolerances for wheels and travel and traversing tracks — Part 1: General

NA to BS EN 1991-1-1:2002, *UK National Annex to Eurocode 1 — Actions on structures — Part 1-1: General actions — Densities, self-weight, imposed loads for buildings*

3 Terms, definitions and symbols

3.1 Terms and definitions

For the purposes of this part of BS 6349, the terms and definitions given in BS 6349-1-1, BS EN 1990 and the following apply.

3.1.1 access trestle

bridge connecting a jetty head to the shore to provide vehicular or pedestrian access and/or support to pipes or conveyors

3.1.2 apron

area of open land adjacent to a berth

3.1.3 berthing beam

isolated piled structure with a continuous capping situated parallel to a berth and having a similar function to two or more berthing dolphins

3.1.4 berthing line

line of the face of the fenders or (where no fenders exist) the berth structure, in the undeflected position

3.1.5 combined wall

retaining wall composed of primary and secondary elements that act in combination

NOTE Combined walls are commonly referred to as combi-walls.

3.1.6 cope

top edge of a quay or jetty adjacent to a berth

3.1.7 cut thread

thread formed in a cylindrical bar using a cutting tool to remove material and form troughs

NOTE The major thread diameter cannot therefore be greater than that of the parent bar.