NA+A1:2020 to BS EN 1991-2:2003

Incorporating Corrigendum No. 1

BSI Standards Publication

UK National Annex to Eurocode 1: Actions on structures —

Part 2: Traffic loads on bridges

Publishing and copyright information

The BSI copyright notice displayed in this document indicates when the document was last issued.

© The British Standards Institution 2020

Published by BSI Standards Limited 2020

ISBN 978 0 580 04401 0

ICS 91.010.30; 93.040

The following BSI references relate to the work on this document: Committee reference B/525 Draft for comment 06/30128340 DC; 19/30393710 DC

Publication history

First published May 2008

Amendments issued since publication

Amd. no.	Date	Text affected
Cor 1	May 2008	"Timber" removed from title
Amd 1	June 2020	Indicated by tags A_1 $\langle A_1 \rangle$

© THE BRITISH STANDA

Contents

Introduction		1
1 Scope		1
2 Nationally determine	ed parameters	2
Table NA.1 – Adjustm	ent factors α_0 and α_a for Load Model 1	3
Figure NA.1 – Basic lo	ngitudinal configuration of SV model vehicles	4
Figure NA.2 – Basic lo	ngitudinal configuration of SOV model vehicles	6
Figure NA.3 – Lateral	wheel arrangement for trailer axles of all SOV models	7
Table NA.2 – Dynamic	c Amplification Factors for the SV and SOV vehicles	7
Figure NA.4 – Typical	application of SV or SOV and Load Model 1 loading when the SV or SOV	
vehicle	lies fully within a notional lane	8
Figure NA.5 – Typical	application of SV or SOV and Load Model 1 loading when the SV or SOV	
vehicle	straddles two adjacent lanes	9
Table NA.3 – Assessme	ent of groups of traffic loads (characteristic values of the	
multi-co	mponent action)	11
Table NA.4 – Indicativ	e numbers of heavy goods vehicles expected per year and per lane in the	
United K	<i>Tingdom</i>	12
Table NA.5 – Set of eq	uivalent lorries for Fatigue Load Model 4	14
Table NA.6 – Forces d	ue to collision with vehicle restraint systems for determining global effects	15
Figure NA.6 – Vehicle	model for abutments and wing walls	16
Table NA.7 – Recomm	ended crowd densities for design	19
Figure NA.7 – Effectiv	e span calculation	20
Table NA.8 – Paramet	ters to be used in the calculation of pedestrian response	20
Figure NA.8 – Relation	nships between $k(f_{\upsilon})$ and mode frequencies f_{υ}	21
Figure NA.9 – Reducti	ion factor, γ , to allow for the unsynchronized combination of pedestrian	
actions	within groups and crowds	22
Table NA.9 – Recomm	ended values for the site usage factor ${ m k_1}$	24
Table NA.10 – Recom	mended values for the route redundancy factor ${f k}_2$	24
Table NA.11 – Recom	mended values for the structure height factor ${ m k}_3$	24
Figure NA.10 – Respon	nse modifiers	24
Figure NA.11 – Latera	ıl lock-in stability boundaries	26
Table NA.12 – Nomina	al longitudinal loads	27
Figure NA.12 – RL Loc	ading	28
Table NA.13 – Nomina	al longitudinal loads (RL loading)	30
Table NA.14 – Standa	rd load spectra for RL loading	31
Table NA.15 – RL load	ling: Annual traffic tonnage and composition of standard traffic mix	31
	s included in Table NA.14 spectra	32
Figure NA.14 – Flow c structi	hart for determining whether a dynamic analysis is necessary for "simple" ures	34
	hart for determining whether a dynamic analysis is required for "simple" and lex" structures	35
-	to for a for a contract of the formula frequency n_0 in Hz as a function of L in m	36
Figure NA.17 – Coordi		40
÷	irre distributions on a vertical structure next to the track	41
-	ire distributions on a voluted structure above the track	42

	Figure NA.20 – Pressure loads on a horizontal structure adjacent to the track Figure NA.21 – Pressure distributions on a multi-surface structure next to the track	44 45
NA.3	Decision on the status of informative annexes	47
NA.4	References to non-contradictory complementary information	48
	Bibliography	49

Summary of pages

This document comprises a front cover, an inside front cover, pages i to ii, pages 1 to 49, and a back cover

II © THE BRITISH STA

National Annex (informative) to BS EN 1991-2:2003, Eurocode 1: Actions on structures – Part 2: Traffic loads on bridges

Introduction

This document has been prepared by BSI Subcommittees B/525/1, *Actions (loadings) and basis of design*, and B/525/10, *Bridges*. In the UK it is to be used in conjunction with BS EN 1991-2:2003.

NA.1 Scope

This document gives:

a) the UK decisions for the Nationally Determined Parameters described in the following subclauses of BS EN 1991-2:2003:

— 1.1 (3)	— 6.5.4.1 (5)
— 2.2 (2) Note 2	— 6.5.4.3 (2) Notes 1 and 2
— 2.3 (1) Note and (4) Note	— 6.5.4.4 (2) Note 1
— 3 (5)	- 6.5.4.5
— 4.1 (1) Note 2 and (2) Note 1	- 6.5.4.5.1 (2)
— 4.2.1 (1) Note 2 and (2)	— 4.7.3.3 (1) Notes 1 and 3 and (2)
— 4.2.3 (1)	— 4.7.3.4 (1)
— 4.3.1 (2)(b) Note 2	— 4.8 (1) Note 2 and (3)
— 4.3.2 (3) Notes 1 and 2 and (6)	— 4.9.1 (1) Note 1
— 4.3.3 (2) and (4)	— 5.2.3 (2)
— 4.3.4 (1)	— 5.3.2.1 (1)
— 4.4.1 (2), (3) and (6)	— 5.3.2.2 (1)
— 4.4.2 (4)	— 5.3.2.3 (1) Note 1
— 4.5.1 (Table 4.4a Notes a and b)	— 5.4 (2)
— 4.5.2 (1) Note 3	— 5.6.1 (1)
— 4.6.1 (2) Note 2c), (3) Note 1 and (6)	— 5.6.2.1 (1)
— 4.6.4 (3)	— 5.6.2.2 (1)
— 4.6.5 (1) Note 2	— 5.6.3 (2) Note 2
— 4.6.6 (1)	— 5.7 (3)
— 4.7.2.1 (1)	— 6.1 (2), (3)P and (7)
— 4.7.2.2 (1) Note 1	— 6.3.2 (3)P
— 6.4.6.1.1 (6) Table 6.4 and (7)	— 6.3.3 (4)P
— 6.4.6.1.2 (3) Table 6.5	— 6.4.4 (1)
— 6.4.6.3.1 (3) Table 6.6	— 6.4.5.2 (3)P
— 6.4.6.3.2 (3)	— 6.4.5.3 (1) Table 6.2
— 6.4.6.3.3 (3) Notes 1 and 2	- 6.5.4.6
— 6.4.6.4 (4) and (5)	— 6.5.4.6.1 (1) and (4)
 6.5.1 (2)	 6.6.1 (3)
— 6.5.3 (5) and (9)	- 6.7.1 (2)P and (8)

RIGHTS RESERVED 1

— 6.7.3 (1)P	— 6.9 (6)
— 6.8.1 (11)P Table 6.10	— 6.9 (7)
 6.8.2 (2)	— Annex C (3)P
 6.8.3.1 (1)	— Annex D (2)
- 6.8.3.2 (1)	

- b) the UK decisions on the status of BS EN 1991-2:2003 informative annexes;
- c) references to non-contradictory complementary information.

NA.2 Nationally determined parameters

NA.2.1 Complementary conditions [BS EN 1991-2:2003, 1.1 (3)]

The models given in **NA.2.34** and **NA.3.1** should be used for the design of buried structures, retaining walls and tunnels, subject to road traffic loading.

NA.2.2 Infrequent values of loads [BS EN 1991-2:2003, 2.2 (2) Note 2]

Infrequent values of loading should not be used.

NA.2.3 Appropriate protection against collision [BS EN 1991-2:2003, 2.3 (1)]

The requirements for protection against collision from road and rail traffic should be determined for the individual project. See also **NA.4**.

NA.2.4 Impact forces due to boats, ships or aeroplanes [BS EN 1991-2:2003, 2.3 (4)]

For impact forces due to boat and ship impacts, refer to BS EN 1991-1-7 and its National Annex.

NA.2.5 Bridges carrying both road and rail traffic [BS EN 1991-2:2003, 3 (5)]

The rules for bridges intended for both road and rail traffic should be determined for the individual project and should be based on, where appropriate, the load models for road and rail traffic as defined in BS EN 1991-2 and this National Annex.

NA.2.6 Models for loaded lengths greater than 200 m [BS EN 1991-2:2003, 4.1 (1) Note 2]

Load Model 1 may be used for loaded lengths up to 1 500 m.

NA.2.7 Weight restricted bridges [BS EN 1991-2:2003, 4.1 (2)]

For road bridges where effective means are provided to strictly limit the weight of any vehicle, specific load models may be determined for the individual project.

NA.2.8 Complementary load models [BS EN 1991-2:2003, 4.2.1 (1)]

Complementary load models and rules for their application may be determined for the individual project. See also **NA.2.34**.

2 © THE BRITISH STA