Material

Material	Mechanism	Failure	Conditions for process	Mitigation	References*†
					 Morris, Understanding Biodeterioration of Wood in Structures CFS, Canadian Woods CAN/CSA-O80 Series CWC, Wood Highway Bridges
	UV exposure	Surface degradation, coating breakdown	Exposure to sunlight	Protective coatings and stains	CWC, Wood Reference Handbook
	Drying-induced shrinkage perpendicular to grain	Splitting or checking; damage to other components; floor misalignment; nail popping	High initial moisture content used in a dry environment; seasonal moisture content changes; inappropriate fastening that restricts drying; shrinkage movement of members; accumulated thicknesses perpendicular to grain (beams, stringers, plates)	Use dry wood, protective coatings; design for drainage and shrinkage and to allow wood movement to ensure that wood is not constrained in tension	 NRC, Commentary E on NBC, Part 4 CBD 244 CWC, Wood Design Manual FPI, Mid-Rise Wood Frame Construction Handbook, Chapter 5: Design for Vertical Differential Movement CWC, Introduction to Wood Design CWC, About Moisture and Wood CWC, Building Performance Series No. 1, Moisture and Wood- Frame Buildings
Masonry (for reference See Table entries for • stone • clay brick • concrete block and See also entries for sto					CMCA, Textbook of Canadian Masonry

(Continued)

Durability in buildings

Table D.1 (Continued)					
Material	Mechanism	Failure	Conditions for process	Mitigation	References*†
 Stone porous to varying degrees crack susceptible at planes of weakness inorganic 	Acid attack	Reduced strength; disintegration; disfigurement	Presence of carbonates in stone (e.g., limestone or sandstone); acid rain; drainage; orientation	Choice of stone; integral mortar; protective coating; protection from precipitation; drainage details	 ASTM C97, C1492, C1496, C1528, STP1394, MNL 21 Amoroso and Fassina (1983) BS 7543 Natural Stone Institute
	Salt crystallization	Spalling, occasionally efflorescence	Water and salts in mortar or adjacent materials (e.g., ground)	Protection from wetting; details promoting drainage; capillary break between masonry and source of salt	 Schaffer (2004) Doehne (2002) ISO 19208 ASTM STP1394, MNL 21 Natural Stone Institute
	Freeze-thaw	Spalling, cracking	Saturation or near- saturation of materials and concurrent freeze- thaw cycles	Choice of stone; protection from wetting; details promoting drainage and drying	 ASTM C1528, STP1394, MNL 21 Natural Stone Institute
	Thermal hysteresis	Bowing and/or dislodging of panels	Type of stone (marble); thickness of stone	Use thicker section or choose stone with demonstrated history of performance	 ASTM C97, STP1394, MNL 21 Grelk et al., Durability of Marble Cladding — A Comprehensive Literature Review Natural Stone Institute
Clay brickporous to varying degreescrack susceptibleinorganic	Freeze-thaw	Spalling, cracking	Saturation or near- saturation of materials and concurrent freeze- thaw cycles	Manufacturing process; protection from wetting; details promoting drainage and drying; moisture barriers; breathable coatings if coatings are used; integral mortar joints, well tooled	 CSA A82 Brick Industry Association Technical Notes

CSA S478:19

60

(Continued)

Material	Mechanism	Failure	Conditions for process	Mitigation	References*†
	Salt crystallization	Efflorescence, subflorescence, occasionally spalling	High moisture content and presence of salts in brick, mortar, or adjacent materials	Low salts in bricks and mortar; protection from wetting; details promoting drainage and drying; integral mortar joints, well compacted; capillary break between material containing salt (e.g., soil) and the masonry	 CSA A82 CBD 2 BRE 359 Brick Industry Association Technical Notes
	Moisture expansion	Cracking, bowing	Bricks expand after manufacture	Aging prior to use; movement joints	Brick Industry Association Technical Notes
	Movement due to moisture and/or temperature variations	Cracking, bowing	Moisture and/or temperature changes; restraint of free movement	Movement joints	 CAN/CSA-A371 NRC, Commentary D on NBC Part 4 BRE 359 Brick Industry Association Technical Notes
Concrete block and mortar • cement-based • porous to varying degrees • inorganic • rigid	Freeze-thaw	Spalling, disintegration (surface scaling), delamination, internal cracking	Saturation or near- saturation of material with concurrent freeze- thaw cycles, aggravated by chlorides (de-icing agents and fertilizers) and poor drainage	Block unit and mortar: use aggregate resistant to degradation; increase cement content; increase level of compaction (tooling for mortar); use admixtures; maximize water for block unit; minimize water for mortar Masonry: protect from precipitation; detail to promote drainage and drying	 Federal Highway Administration, Publication No. FHWA- HRT-07-021, 2007 Tate and Thomson, Effect of Air Entrainment on Freeze- Thaw Durability of Type S Portland Cement-Lime Mortars

(Continued)

© 2019 Canadian Standards Association

Material

Table D.1 (Continued)

Mechanism	Failure	Conditions for process	Mitigation	References*†
Sulphate attack	Expansion, disintegration, spalling	Sulphates in groundwater or sea water	Sulphate-resistant cement; optimize mix design; high cement ratio; high compaction; air entrainment; improve drainage	- CSA A23.1 - CBD 136
Acid attack	Reduced strength, disintegration	Acids in industrial buildings — amount in contact; permeability	Protective coatings	 FIB, CEB Bulletin 182 Kerkhoff, Effects of Substances on Concrete and Guide to Protective Treatment
Moisture ingress	Efflorescence, disintegration, spalling, surface formation of calcium carbonate	Vapour transfer, permeability, uncontrolled movement of water through the masonry	Protect masonry from precipitation during construction and in service; protect masonry from ingress of water from the top and from groundwater at the base and from behind; detail to promote drainage and drying	Drysdale and Hamid (2005)
Biological attack	Reduced strength, disintegration	Contact with sewage (generation of acids)	Protective coatings; cleaning	FIB, CEB Bulletin 182
Shrinkage	Cracking of mortar or masonry, potential damage to adjacent building elements	High w/c ratio in mortar; high linear drying shrinkage of the block unit	Mix design of mortar and block; construction sequence; frequency and placement of control/ movement joints; amount and distribution of reinforcement; curing and moisture control prior to use	 CSA A23.1, A165 Series, CAN/CSA-A371 NCMA, TEK-10 Series

(Continued)

		Table							
Material	Mechanism	Failure	Conditions for process	Mitigation	References*†				
	Creep	Deformation, damage to adjacent building elements; misalignment of building elements	Long-term exposure to high loads resulting in high levels of stress below the yield strength of the material; long- term exposure to high temperatures	Reduce stresses; apply loads at later age of masonry; place movement joints	Brooks, Factors in Creep of Masonry				
	Temperature movements	Cracking and/or bowing of masonry	Temperature changes; restraint of free movement	Reinforcement; control/ movement joints	 CSA A23.1, S304.1 NRC, Commentary D on NBC Part 4 NCMA, TEK-10 Series 				
	Salt crystallization	Efflorescence, subflorescence, spalling	Soluble salts in the block units and mortar; soluble salts in groundwater or other adjacent sources absorbed by the masonry	Use low-alkali cement; protect masonry from precipitation and from ingress of water from the top and from groundwater at the base and from behind; detail to promote drainage and drying Use dampproofing and waterproofing to prevent entrance of groundwater	NCMA, TEK 08-03A				
Concrete (for reference: See also entries for stee		H.4.8)							
 porous to varying degrees cracks due to 	Freeze-thaw	Spalling, disintegration, cracking	Saturation or near- saturation of material and concurrent freeze-	Air entrainment; air void spacing factor; exposure class; choice of	 CBD 116 CSA A23.1 ACI 201.2, 302.1 				

(Continued)

Durability in buildings

thaw cycles, aggravated by chlorides and poor

aggregates; protection

from precipitation; details promoting

drainage and drying;

shrinkage

• inorganic

drainage

Mechanism	Failure	Conditions for process	Mitigation	References*†
			proper finishing procedures on flatwork	
Sulphate attack	Expansion, followed by disintegration	Sulphates in groundwater, bricks, coal stockpiles, or sea water; type of aggregate and cement used in concrete	Type of cement, mix design, drainage	- CSA A23.1 - CBD 136 - ACI 201.2
Alkali-aggregate reaction — alkali- silica reaction (ASR) and alkali-carbonate reaction (ACR)	Expansion, followed by disintegration	Silica or dolomite aggregates, with moisture	Type of aggregates or cement additives; control of moisture; type of cement (lower alkali content); use of supplementary cementing materials	– CSA A23.1 – ACI 201.2, 221.1
Acid attack	Strength, disintegration	Acids in industrial buildings — amount in contact; permeability	Protective coatings	FIB, CEB Bulletin 182
Moisture ingress	Efflorescence; mortar disintegration; formation of calcium carbonate	Vapour transfer; permeability	Mix design; protection from precipitation; details promoting drainage and drying; type of cement	CAN/CSA-A179
Biological attack	Strength, disintegration	Contact with sewage (generation of acids)	Protective coatings; cleaning	FIB, CEB Bulletin 182
Drying shrinkage	Cracking, damage to adjacent building elements	High water/cement (w/c) ratio, paste content; type and gradation of aggregate; restraint; relative humidity; drying time; member size and shape	Mix design; construction sequence; proper control joints and joint layout; amount and distribution of reinforcement; curing and moisture control prior to use; use of larger coarse aggregate;	 CSA A23.1, A165 Series, CAN/CSA-A371 ACI 224

April 2019

Material

(Continued)

Durability in buildings

This is a preview. Click here to purchase the full publication.

Mechanism	Failure	Conditions for process	Mitigation	References*†
			optimized aggregate gradation; moderate w/c ratio; use of shrinkage- reducing admixtures (SRAs)	
Autogenous shrinkage	Cracking in early age high-strength or high- performance concrete	Low w/c ratio (under 0.42); types of supplementary cementing materials used	Immediate water curing; reduced paste content; increase in maximum aggregate size	ACI 231
Creep	Deformation, damage to adjacent building elements	Long-term exposure to high loads resulting in high levels of stress below the yield strength of the material; long- term exposure to high temperatures	Design (greater thickness, pre-stressing); movement joints	ACI 209
Temperature movements	Cracking, bowing	Temperature changes; restraint of free movement	Reinforcement; control/ movement joints	 CSA A23.1, S304.1 NRC, Commentary D on NBC Part 4
Thermal stress cracking	Early cracking within the building element	Mass concrete elements that can create large temperature differentials; mix design (high cement content); initial placing temperature; lack of thermal protection; restraint	Mix design (high-volume replacement of cement with supplementary cementing materials); type of cement; thermal protection to reduce temperature gradient within the element; reduced initial placing temperature; reinforcement	– CSA A23.1 – ACI 207.2
Abrasion	Surface disintegration	Heavy traffic; wind- driven particles;	Protective toppings; choice of aggregate,	 Annex F of CSA A23.1, CSA S413

April 2019 Material

(Continued)

This is a preview. Click here to purchase the full publication.

April 2019

Material	Mechanism	Failure	Conditions for process	Mitigation	References*†
			compressive strength of concrete surface	additives; low to relatively low w/c ratio; proper curing	- ACI 201.2
	Delayed ettringite formation (DEF)	Visible displacement and cracking	Internal concrete temperature greater than the limits given in CSA A23.1; exposure to cyclic wetting and drying in service	Type of cement used in the mix; use of supplementary cementing materials; reduced initial placing temperature	- CSA A23.1 - ACI 201.2
Metals (for reference	es, see Clause H.4.2)				
Metals (all)	Galvanic corrosion	Many	Electrolyte (moisture- filled porous material); dissimilar metals electrically connected	Choice of materials; electrical disconnection of adjoining metals	 Ahmad (2006) Landolfo, Cascini, and Portioli (2010)
	Differential thermal movements	Cladding damage	Metals of different coefficients of thermal expansion connected to produce constraint stresses	Design to accommodate movement; choice of metals	NRC, Commentary D on NBC Part 4
Steel • non-porous • inorganic	Corrosion: atmospheric environment	Connector failures; appearance; damage due to rust expansion	Sustained moisture; oxygen, aggravated by acids and hygroscopic impurities	Drainage (avoid water traps); ventilation; protective coatings	 BS 5493 DIN EN ISO 12944-1 CBD 170
	Corrosion: marine environment	Corrosion of piles in splash zone	Sustained moisture; oxygen, aggravated by chlorides	Corrosion protection of steel through the use of cold applied tapes, liquid polymer–based coatings, fibre-reinforced plastic (FRP) wraps	BS 5493
	Corrosion: soil environment	Pile and pipe failures	Sustained moisture; oxygen or anaerobic	Type of soil (test for resistivity, bacteria, etc.);	ANSI/AWWA C105/A21.5

Table D.1 (Continued)

(Continued)

-			
, , ,			

Material	Mechanism	Failure	Conditions for process	Mitigation	References*†
			bacteria, aggravated by soluble salts; stray electric currents	protective coating; cathodic protection	
	Corrosion: concrete environment	Failure of reinforcement or delamination of concrete	Sustained moisture; oxygen; chlorides; pH reduced by carbonation	Protective barriers; concrete mix; drainage details; proper exposure class; addition of calcium nitrite admixture (corrosion inhibitor); concrete cover	 CSA A23.1, S413 CBD 224, 225 ACI 201.2
	Corrosion: masonry environment	Failure of connectors (main body, buckling); cracking/spalling of masonry due to expansion of corrosion by- products; staining	Sustained moisture; oxygen; preservative types	Zinc coating thickness; stainless steel	 CAN/CSA-A370, CAN/CSA-A371 Ailor (1982) CIB 127
	Corrosion: timber environment	Failure of connectors and surrounding wood	Sustained moisture; oxygen	Drainage (avoid water traps); ventilation; protective coatings	 FPL, Wood Handbook BRE 301
	Fatigue	Structural failure	Cyclic loads	Welding details; structural design	- CSA S6.1 - CIB 128
Weathering steel	Corrosion: atmospheric environment (red rust)	Connector failures, damage due to rust expansion	Retention of water between surfaces; sea water	Detailing to avoid accumulation of water between surfaces	ASTM G101
Stainless steel	Pitting or crevice corrosion, intergranular corrosion, stress corrosion cracking	Connector failures	Type of stainless steel, aggravated by warm chlorinated atmospheres, high stress	Type of stainless steel SS304 SS316	ASTM A240, A666

CSA S478:19

April 2019

(Continued)

Durability in buildings

This is a preview. Click here to purchase the full publication.

Material	Mechanism	Failure	Conditions for process	Mitigation	References*†
	(orange pitted appearance)				
Hot-dipped zinc galvanized steel	Corrosion: atmospheric environment (white powdery appearance)	Failure of connectors, structural members; downgrading of appearance	Sustained moisture; oxygen; chlorides; pH reduced by SO ₂	Stainless steel	ASTM A123/A123M, A153/ A153M, A385/A385M
	Corrosion: concrete environment	Failure of reinforcement or delamination of concrete	Sustained moisture; oxygen; chlorides; pH reduced by carbonation	Stainless steel	ASTM A767/A767M
	Corrosion: masonry environment	Failure of connectors; cracking of masonry	Sustained moisture; oxygen; chlorides; pH reduced by carbonation and SO ₂	Stainless steel	ASTM A123/A123M, A153/ A153M
	Corrosion: timber environment	Failure of connectors and surrounding wood	Sustained moisture; oxygen	Stainless steel	ASTM A123/A123M, A153/ A153M
Aluminum alloys	Corrosion (dark pitted appearance)	Downgrading of appearance; connector failures	Type of alloy, surface finish; contact with alkaline solution, copper, or copper-containing solution; contact with some other metals	Drainage (avoid contact with alkaline solutions or drainage from large, dissimilar metal surface area); anodization; protective coatings	– BRANZ 213 – ASTM B234, B580
Copper and alloys	Dezincification of brass (green to dark pitted appearance)	Failure of fasteners by loss of strength or cracking; downgrading of appearance; connector failures	Type of brass	Material selection (brass with less than 20% zinc)	ASTM B36/B36M, B152/B152M

(Continued)

Durability in buildings

April 2019