ψ_{λ} is the end-effect factor (see 7.13)

NOTE 1 Intermediate values may be interpolated linearly

NOTE 2 Typical values in the above Figure are shown in Table 7.12. Figure and Table are based on the Reynolds number with $V = \sqrt{\frac{2 \cdot q_p}{\rho}}$ and q_p given in 4.5

NOTE 3 The above Figure is based on an equivalent roughness k/b less than $5 \cdot 10^{-4}$. Typical values of roughness height *k* are given in Table 7.13.

Figure 7.27 —Pressure distribution for circular cylinders for different Reynolds number ranges and without end-effects

Re	α_{\min}	C _{p0,min}	α _A	C _{p0,h}		
5·10 ⁵	85	-2,2	135	-0,4		
2·10 ⁶	80	-1,9	120	-0,7		
10 ⁷	75	-1,5	105	-0,8		
where: α_{min} is the position of the minimum pressure in [°] $c_{p0,min}$ is the value of the minimum pressure coefficient α_A is the position of the flow separation in [°] $c_{p0,h}$ is the base pressure coefficient						

Table 7.12 — Typical values for the pressure distribution for circular cylinders for different Reynolds number ranges and without end-effects

(5) The reference area A_{ref} should be determined from Expression (7.18):

$$A_{\rm ref} = \ell \cdot b \tag{7.18}$$

(6) The reference height z_e is equal to the maximum height above ground of the section being considered.

7.9.2 Force coefficients

(1) The force coefficient c_f for a finite circular cylinder should be determined from Expression (7.19).

$$\boldsymbol{c}_{\mathrm{f}} = \boldsymbol{c}_{\mathrm{f},0} \cdot \boldsymbol{\psi}_{\lambda} \tag{7.19}$$

where:

$$c_{f,0}$$
 is the force coefficient of cylinders without free-end flow (see Figure 7.28)

 ψ_{λ} is the end-effect factor (see 7.13)

Figure 7.28 — Force coefficient $c_{f,0}$ for circular cylinders without free-end flow and for different equivalent roughness k/b

NOTE 1 Figure 7.28 may also be used for building with h/d > 5.0

NOTE 2 Figure 7.28 is based on the Reynolds number with $v = \sqrt{\frac{2 \cdot q_p}{\rho}}$ and q_p given in 4.5

(2) Any Values of equivalent surface roughness k for new surfaces are given in Table 7.13.

NOTE For aged surfaces the values of the equivalent surface roughness k may be given in the National Annex. (A)

(3) For stranded cables $c_{f,0}$ is equal to 1,2 for all values of the Reynolds number *Re*.

DIN EN 1991-1-4:2010-12 EN 1991-1-4:2005 + A1:2010 + AC:2010 (E)

Type of surface	Equivalent roughness <i>k</i>	Type of surface	Equivalent roughness <i>k</i>
	mm		mm
glass	0,0015	smooth concrete	0,2
polished metal	0,002	planed wood	0,5
fine paint	0,006	rough concrete	1,0
spray paint	0,02	rough sawn wood	2,0
bright steel	0,05	rust	2,0
cast iron	0,2	brickwork	3,0
galvanised steel	0,2		

Table 7.13 — Equivalent surface roughness k

(2) The reference area A_{ref} should be obtained by Expression (7.20).

$$\boldsymbol{A}_{\text{ref}} = \ell \cdot \boldsymbol{b} \tag{7.20}$$

where:

 ℓ is the length of the structural element being considered.

(3) The reference height z_e is equal to the maximum height above ground of the section being considered.

(4) For cylinders near a plane surface with a distance ratio $z_g/b < 1,5$ (see Figure 7.29) special advice is necessary.

Figure 7.29 — Cylinder near a plane surface

7.9.3 Force coefficients for vertical cylinders in a row arrangement

For vertical circular cylinders in a row arrangement, the force coefficient $c_{f,0}$ depends on the wind direction related to the row axis and the ratio of distance *a* and the diameter *b* as defined in Table 7.14. The force coefficient, $c_{f,0}$ for each cylinder may be obtained by Expression (7.21):

$$\boldsymbol{C}_{\mathrm{f}} = \boldsymbol{C}_{\mathrm{f},0} \cdot \boldsymbol{\psi}_{\lambda} \cdot \boldsymbol{\kappa}$$

(7.21)

where:

 $c_{f,0}$ is the force coefficient of cylinders without free-end flow, (see 7.9.2)

 ψ_{λ} is the end-effect factor (see 7.13)

 κ is the factor given in Table 7.14 (for the most unfavourable wind direction)

7.10 Spheres

(1) The alongwind force coefficient $c_{f,x}$ of spheres should be determined as a function of the Reynolds number *Re* (see 7.9.1) and the equivalent roughness *k/b* (see Table 7.13).

NOTE 1 The values of $c_{f,x}$ may be given in the National Annex. Recommended values based on measurements in low turbulent flow are given in Figure 7.30. Figure 7.30 is based on the Reynolds number with $v = \sqrt{\frac{2 \cdot q_p}{\rho}}$ and q_p given in 4.5

NOTE 2 The values in Figure 7.30 are limited to values $z_g > b/2$, where z_g is the distance of the sphere from a plain surface, *b* is the diameter (see Figure 7.31). For $z_g < b/2$ the force coefficient $c_{f,x}$ is be multiplied by the factor 1,6.

DIN EN 1991-1-4:2010-12 EN 1991-1-4:2005 + A1:2010 + AC:2010 (E)

Figure 7.30 — Alongwind force coefficient of a sphere

(2) The vertical force coefficient $c_{f,z}$ of spheres is given by Expression (7.22).

$$c_{f,z} = 0 \qquad \text{for} \qquad z_g > \frac{b}{2}$$

$$c_{f,z} = +0,60 \qquad \text{for} \qquad z_g < \frac{b}{2}$$
(7.22)

(3) In both cases the reference area A_{ref} should be obtained by Expression (7.23).

$$A_{\rm ref} = \pi \cdot \frac{b^2}{4} \tag{7.23}$$

(4) The reference height should be taken as:

$$z_{\rm e} = z_{\rm g} + \frac{b}{2} \tag{7.24}$$

Figure 7.31 — Sphere near a plain surface

(7.25)

7.11 Lattice structures and scaffoldings

(1) The force coefficient, c_f , of lattice structures and scaffoldings with parallel chords should be obtained by Expression (7.25).

$$\boldsymbol{c}_{\rm f} = \boldsymbol{c}_{\rm f,0} \cdot \boldsymbol{\psi}_{\lambda}$$

where:

- $c_{f,0}$ is the force coefficient of lattice structures and scaffoldings without end-effects. It is given by Figures 7.33 to 7.35 as a function of solidity ratio φ (7.11 (2)) and Reynolds number Re.
- *Re* is the Reynolds number using the average member diameter *b*_i, see Note 1
- ψ_{λ} is the end-effect factor (see 7.13) as a function of the slenderness of the structure, λ , calculated with ℓ and width b = d, see Figure 7.32.

NOTE 1 AC Figure 7.35 is based (AC on the Reynolds number with $v = \sqrt{\frac{2 \cdot q_p}{\rho}}$ and q_p given in 4.5.

AC NOTE 2 The National Annex may give a reduction factor for scaffolding without air tightness devices and affected by solid building obstruction. A recommended value is given in EN 12811.

Figure 7.32 — Lattice structure or scaffolding

Figure 7.33 — Force coefficient $c_{f,0}$ for a plane lattice structure with angle members as a function of solidity ratio φ

Figure 7.34 —Force coefficient $c_{\rm f,0}$ for a spatial lattice structure with angle members as a function of solidity ratio φ

Figure 7.35 — Force coefficient $c_{f,0}$ for plane and spatial lattice structure with members of circular cross-section

(2) The solidity ratio, φ , is defined by Expression (7.26).

$$\varphi = \frac{A}{A_{\rm c}} \tag{7.26}$$

where:

A is the sum of the projected area of the members and gusset plates of the face projected normal to the face: $A = \sum_{i} b_{i} \cdot \ell_{i} + \sum_{k} A_{gk}$

 $A_{\rm c}$ is the the area enclosed by the boundaries of the face projected normal to the face = $d \ell$

 ℓ is the length of the lattice

- d is the width of the lattice
- b_i , ℓ_i is the width and length of the individual member i (see Figure 7.32), projected normal to the face
- A_{gk} is the area of the gusset plate k
- (3) The reference area A_{ref} should be determined by Expression (7.27)

$$A_{\rm ref} = A \tag{7.27}$$

(4) The reference height z_e is equal to the maximum height of the element above ground.

7.12 Flags

- (1) Force coefficients c_f and reference areas A_{ref} for flags are given in Table 7.15.
- (2) The reference height z_e is equal to the height of the flag above ground.

DIN EN 1991-1-4:2010-12 EN 1991-1-4:2005 + A1:2010 + AC:2010 (E)

Flags	A _{ref}	C _f			
Fixed Flags h h h h Force normal to the plane	$h \cdot \ell$	1,8			
(a) Free Flags h h	h · ℓ	$0,02+0,7\cdot\frac{m_{\rm f}}{\rho\cdot h}\cdot\left(\frac{A_{\rm ref}}{h^2}\right)^{-1,25}$			
b) b	0,5 · <i>h</i> · ℓ				
where: <i>m</i> _f is the mass per unit area of the flag					
ρ $\stackrel{\text{AC}}{=}$ is the air density (see 4.5 (1) NOTE 2) $\stackrel{\text{AC}}{=}$ is the height of the flag above ground					
NOTE The equation for free flags includes dynamic forces from the flag flutter effect					

Table 7.15 — Force coefficients c_f for flags