PARAMETER: Logical Interface

MIL-STD-1760 PARAGRAPH: B.40.1.5.2 and B.40.1.5.2.1

PURPOSE: This method verifies the AEIS BC uses and properly calculates the Mission

Store Control message Checksum.

PARAMETER TYPE: () ELECTRICAL (X) PROTOCOL (.) PHYSICAL

VALIDATION TECHNIQUE: () TEST (X) ANALYSIS () INSPECTION

VALIDATION CRITERIA: The platform is considered to have passed if the BC issues

the Mission Store Control message Checksum.

APPARATUS: N/A

VALIDATION METHOD: Evaluate the AEIS BC software to determine if the Mission Store Control message Checksum algorithm is properly implemented.

NOTES: N/A

FIGURE A31 - Aircraft Validation Requirement (Method MUX113)

PARAMETER: Logical Interface

MIL-STD-1760 PARAGRAPH: B.40.1.5.3.1

PURPOSE: This method verifies the AEIS BC is compatible with the execution time and busy bit application for stores operation as define in paragraph B.40.1.5.3.3.

PARAMETER TYPE: () ELECTRICAL (X) PROTOCOL (.) PHYSICAL

VALIDATION TECHNIQUE: () TEST (X) ANALYSIS () INSPECTION

VALIDATION CRITERIA: The platform is considered to have passed if the AEIS BC is compatible with the execution time and busy bit application for stores operation as defined in paragraph B.40.1.5.3.3.

APPARATUS: N/A

VALIDATION METHOD: Evaluate the AEIS BC software to determine if the BC is compatible with the execution time and busy bit application for stores operation as defined in paragraph B.40.1.5.3.3.

NOTES: N/A

FIGURE A32 - Aircraft Validation Requirement (Method MUX114)

PARAMETER: Logical Interface

MIL-STD-1760 PARAGRAPH: B.40.1.5.5

PURPOSE: This method verifies the AEIS BC capability to interpret the store Status Word with the Service Request Bit set to Logic 1 as a request for a transmit Vector Word Mode Command.

PARAMETER TYPE: () ELECTRICAL (X) PROTOCOL (.) PHYSICAL

VALIDATION TECHNIQUE: () TEST (X) ANALYSIS () INSPECTION

VALIDATION CRITERIA: The platform is considered to have passed if the AEIS BC generates the Transmit Vector Word mode command to the requesting store.

APPARATUS: N/A

VALIDATION METHOD: Evaluate the AEIS BC software to determine if the BC interprets the store Status Word with the Service Request Bit set to Logic 1 as a request for a transmit Vector Word Mode Command and generates the Transmit Vector Word command to the requesting store.

NOTES: N/A

FIGURE A33 - Aircraft Validation Requirement (Method MUX115)

PARAMETER: Logical Interface

MIL-STD-1760 PARAGRAPH: B.40.2.1, B.40.2.1.1, and B.40.2.1.2

PURPOSE: This method verifies the AEIS BC's Message Data Format not defined by B.40.2.2 or B.40.2.3 conforms to the Base Message format defined in Tables B-VII, B-VIII, and B-IX.

PARAMETER TYPE: () ELECTRICAL (X) PROTOCOL (.) PHYSICAL

VALIDATION TECHNIQUE: () TEST (X) ANALYSIS () INSPECTION

VALIDATION CRITERIA: The platform is considered to have passed if the BC Base Message Data Format conforms to the format defined in Tables B-VII, B-VIII, and B-IX.

APPARATUS: N/A

VALIDATION METHOD: Evaluate the AEIS BC software to determine if the Base Message Data Format conforms to the format defined by Tables B-VII, B-VIII, and B-IX.

NOTES: N/A

FIGURE A34 - Aircraft Validation Requirement (Method MUX116)

PARAMETER: Logical Interface

MIL-STD-1760 PARAGRAPH: B.40.2.2.1

PURPOSE: This method verifies the AEIS BC's capability to issue the Mission Store Control message and its compliance to Tables B-XI, B-XXXII and B-XXXIII.

PARAMETER TYPE: () ELECTRICAL (X) PROTOCOL (.) PHYSICAL

VALIDATION TECHNIQUE: () TEST (X) ANALYSIS () INSPECTION

VALIDATION CRITERIA: The platform is considered to have passed if the BC can issue the Mission Store Control message and it is compliant in all respects with Tables B-XI, B-XXXII and B-XXXIII..

APPARATUS: N/A

VALIDATION METHOD: Evaluate the AEIS BC software to determine if the Mission Store Control message is properly implemented and is compliant in all respects with Tables B-XI, B-XXXII and B-XXXIII.

NOTES: N/A

FIGURE A35 - Aircraft Validation Requirement (Method MUX117)

PARAMETER: Logical Interface

MIL-STD-1760 PARAGRAPH: B40.2.2.2

PURPOSE: This method verifies the AEIS BC's capability to issue the transmit

Mission Store Monitor Transmit command.

PARAMETER TYPE: () ELECTRICAL (X) PROTOCOL (.) PHYSICAL

VALIDATION TECHNIQUE: () TEST (X) ANALYSIS () INSPECTION

VALIDATION CRITERIA: The platform is considered to have passed if the BC can issue

the Mission Store Monitor Transmit command.

APPARATUS: N/A

VALIDATION METHOD: Evaluate the AEIS BC software to determine if the transmit Mission Store Monitor command is implemented and that the AEIS BC software can properly interpret the message.

NOTES: N/A

FIGURE A36 - Aircraft Validation Requirement (Method MUX118)

PARAMETER: Aircraft LB Interface

MIL-STD-1760 PARAGRAPH: 5.1.1.3

PURPOSE: This method verifies that the aircraft LB interface provides a noninverting signal connection, inverting signal connection, and a shield connection.

PARAMETER TYPE: () ELECTRICAL () PROTOCOL (X) PHYSICAL

VALIDATION TECHNIQUE: () TEST (X) ANALYSIS () INSPECTION

VALIDATION CRITERIA: The aircraft is considered to have passed if the ASI supplies the required connection.

APPARATUS: N/A

VALIDATION METHOD: Evaluate the aircraft's TDP to determine if the ASI provides the required connections.

NOTES:

 Reference: Design Principles and Practices for Implementation of MIL-STD-1760 in aircraft and stores (Technical Report ASD-TR-87-5028).

FIGURE A37 - Aircraft Validation Requirement (Method LBW101)

PARAMETER: Transfer Requirements

MIL-STD-1760 PARAGRAPH: 5.1.1.3.1

PURPOSE: This method verifies that the aircraft provides the LB distribution network necessary to support bi-directional signal transfer from any ASI to applicable aircraft equipment.

PARAMETER TYPE: () ELECTRICAL () PROTOCOL (X) PHYSICAL

VALIDATION TECHNIQUE: () TEST (X) ANALYSIS () INSPECTION

VALIDATION CRITERIA: The aircraft is considered to have passed if the LB distribution network provides the necessary connectivity to support signal transfer from any ASI applicable aircraft equipment to any ASI.

APPARATUS: N/A

VALIDATION METHOD: Evaluate the aircraft's TDP to determine if the aircraft LB distribution network provides the necessary connectivity to support bi-directional signal transfer from any ASI to applicable air vehicle equipment.

NOTES:

- 1. This method verifies that the aircraft provides the required MIL-STD- 1760 connectivity only; other validation methods verify electrical performance of the aircraft LB distribution network.
- 2. Reference: Design Principles and Practices for Implementation of MIL-STD-1760 in aircraft and stores (Technical Report ASD-TR-87-5028), paragraph 5.1.1.3.1, page 314.

FIGURE A38 - Aircraft Validation Requirement (Method LBW102)

PARAMETER: Output Voltage

MIL-STD-1760 PARAGRAPH: 5.1.1.3.2.1 and 5.1.1.3.2.3

PURPOSE: This method verifies that the output voltage of the aircraft's LB interface is within the specified limits under maximum loading conditions (see Note 1).

PARAMETER TYPE: (X) ELECTRICAL () PROTOCOL () PHYSICAL

VALIDATION TECHNIQUE: (X) TEST () ANALYSIS () INSPECTION

VALIDATION CRITERIA: The aircraft is considered to have passed if the LB output voltage measured at the ASI is within the range of -12 to +12 V. Both line-to-line and line-to-ground voltages shall be within this limits.

APPARATUS:

- a. 70 Ω load
- b. Signal analyzer (0 Hz to 50 kHz)
- c. Oscilloscope
- d. Test cabling connecting the test equipment to the ASI
- e. Other ASI peculiar test equipment, as required

VALIDATION METHOD: Initiate LB transmission to the ASI. Connect the 70 Ω load resistor across the output ASI LB interface and use the signal analyzer to verify that the output voltage is within the ± 12 V limits and that the frequency spectrum is within the required 0 Hz to 50 kHz frequency range.

NOTES:

- 1. This method is applicable for all aircraft generated LB signals.
- 2. Signal characteristic: ±12.0 V maximum, 0 Hz to 50 kHz, 150 mA maximum.
- 3. Reference: Design Principles and Practices for Implementation of MIL-STD-1760 in aircraft and stores (Technical Report ASD-TR-87-5028), paragraph 5.1.1.3.2, page 314.

FIGURE A39 - Aircraft Validation Requirement (Method LBW103)

PARAMETER: Input Current

MIL-STD-1760 PARAGRAPH: 5.1.1.3.2.1

PURPOSE: This method verifies that the aircraft's LB load current level at the ASI does not exceed the specified value of 150 mA line-to-line and line-to-ground.

PARAMETER TYPE: (X) ELECTRICAL () PROTOCOL () PHYSICAL

VALIDATION TECHNIQUE: (X) TEST () ANALYSIS () INSPECTION

VALIDATION CRITERIA: The aircraft is considered to have passed if the LB input load current level is within the range of 0 to 150 mA over the frequency range of 0 Hz to 50 kHz.

APPARATUS:

- a. Oscilloscope
- b. Current probe
- c. Swept frequency source (0 Hz to 50 kHz)
- d. Audio sine wave generator (0 Hz to 50 kHz)
- e. 80 ohm load
- f. Test cabling connecting the test equipment to the ASI
- g. Other ASI peculiar test equipment, as required

VALIDATION METHOD: Establish an aircraft LB network configuration to support the desired test setup.

NOTES:

1. Reference: Design Principles and Practices for Implementation of MIL-STD-1760 in aircraft and stores (Technical Report ASD-TR-87-5028).

FIGURE A40 - Aircraft Validation Requirement (Method LBW104)