NZS 3603:1993

TIMBER STRUCTURES STANDARD Amendments No 1&2&4 Appended

SUPERSEDING NZS 3603:1990 AND NZS3615:1981

This is a preview. Click here to purchase the full publication.

Online Library subscription service PDF Terms & Conditions

An Authorised User may download a single copy of a document and retain that copy on their personal computer for a maximum of five working days for their internal purposes. At the expiry of five working days, the Document must be deleted from the Authorised User's computer.

Each Authorised User may print one hard copy of any Document for their internal purposes. These copies may not be used to build up a hard copy reference collection. A reference collection is defined as a collection comprising more than 10% of the number of the Documents within the Authorised User's subscription portfolio. All hard copies of Documents must be destroyed within 12 months or at the end of their course whichever comes first.

Copyright subsists in each of the Documents and the full title to that copyright is at all times retained by Standards New Zealand.

Except as otherwise may be expressly permitted under the Copyright Act 1994 Authorised Users will undertake not to copy, modify, merge with other software or documents, or circulate electronically without securing the prior written permission of Standards New Zealand.

Under no circumstance may a Document, whether in electronic or hard copy form, be sold, or transferred to a third party.

Under no circumstances may any Document be placed on a network of any sort without express permission of Standards New Zealand.

Authorised Users may not modify, adapt, translate, reverse engineer, decompile, disassemble or create derivative works based on the Documents.

Right of access to the subscription service is personal to Authorised Users and can not be transferred, sold, leased, rented or loaned via a timesharing, service bureau or other arrangement.

All Authorised User identification information, including logins and passwords, are to be kept secret and secure.

No Authorised User may attempt to damage, interfere or harm the Standards New Zealand website, or any network, or system underlying or connected to the subscription service.

This is a preview. Click here to purchase the full publication.

NZS 3603:1993

Section 6 Plywood

6.1	General	73
6.2	Stresses and moduli	73
6.3	Modification factors	74
6.4	Loading perpendicular to the plane of the sheet	77
6.5	Loading in the plane of the sheet	79
6.6	Plywood components	81

Section 7 Round timbers

7.1	General	
7.2	Characteristic stresses and elastic moduli	
7.3	Design	
	Modification factor, k ₂₀ for trimming or shaving	
7.5	Modification factor, k_{21} for preservative treatment	
	involving steaming	
7.6	Modification factor, k ₂₂ for dry use conditions	
7.7	Effective sections	88

Section 8 Glued laminated timber

8.1	Scope	89
8.2	Specification	89
8.3	Standard sizes	89
8.4	Finish	90
8.5	Moisture content	90
8.6	Design	91
8.7	Modification factors	91
8.8	Curved and tapered members	93
8.9	Butt joints	97
8.10	Camber	99
8.11	Holes drilled in fabricated members	99
8.12	Nail plate joints	99

Section 9 Design for fire resistance

9.1	Scope
9.2	Fire resistance ratings100
	Loads
9.4	Calculation of fire resistance rating of timber elements100
9.5	Details of construction102

Section 10 Testing of timber structures

10.1 General	
10.2 Testing authority	
10.3 Testing conditions	
10.4 Test procedure	
10.5 Acceptance criteria	
10.6 Prototype or sample testing	
10.7 Proof testing	107
10.8 Reporting of tests	

Contents continued

Table

2.1	Condition to be assumed for determination of	
	characteristic stresses, modulus of elasticity, joint	
		18
2.2	Characteristic stresses for visually graded timber (MPa)	19
2.3	Characteristic stresses for mechanically graded	
	timber (MPa)	
2.4	Duration of load factor, k ₁ for strength	22
2.5	Duration of load factor, k ₂ for deflection	23
2.6	Bearing area factor, k ₃	23
2.7	Parallel support factor, k4 or k6	25
2.8	Stability factor, k ₈	
3.1	Notch coefficient, k7	34
4.1	Classification of timber species for joint design	41
4.2	Minimum spacing of nails and screws in joints	
4.3	Characteristic strengths (N) for one plain steel wire nail	
	in single shear in side grain in dry timber	46
4.4	Characteristic withdrawal strength per millimetre of nail	
	penetration (N/mm) for one plain steel wire nail in side	
	grain	47
4.5	Characteristic strength (N) for one steel wood screw in	
1.0	single shear in side grain in dry timber	۵۵
4.6	Maximum design withdrawal strength for one steel screw	40
4.0		50
4.7	Characteristic withdrawal strength per millimetre of screw	50
4.7	thread penetration (N/mm) for wood screw inserted	
	at right angles to the grain of dry timber	50
4.8	Values of f_{ci} for bolted joints in dry timber	
4.0 4.9	Characteristic strength for a single bolt in dry timber	52
4.9		53
4 10	J	00
4.10	Characteristic strength, Q_{skl} (kN) for a single bolt in a	
	two-member joint in dry timber loaded parallel to the grain	
4.11	Values of f_{pj} for bolted joints in dry timber	90
4.12	Characteristic strength for a single bolt in dry timber	
	loaded perpendicular to the grain	56
4.13	Characteristic strength, Q_{skp} (kN) for a single bolt in a	
	two-member joint in dry timber loaded perpendicular to	
	grain	57
4.14	Factor, k_{12} for bolt and coach screw joints in	~~
	green timber	60
4.15	Factor, k_{13} for the design of multiple-bolt and	~~
	multiple-coach-screw joints	60
4.16	Characteristic withdrawal strength per millimetre of	
	penetration of thread (N/mm) for a coach screw in	
	dry timber	62
5.1	Maximum nail diameters (mm)	
6.1	Characteristic stresses for structural plywood	
6.2	Face grain orientation factor, k_{15} for strength	
6.3	Face grain orientation factor, k ₁₆ for stiffness	
6.4	Face grain orientation factors for shear	.77
7.1	Characteristic stresses (MPa) and modulus of	
	elasticity (GPa) for naturally round softwood timber	
	in green condition	.87

Contents continued overleaf

•

NZS 3603:1993

7.2	Peeling or shaving factor, k ₂₀ 88
7.3	Steaming factor, k_{21}
7.4	Dry use factor, k_{22}
8.1	Laminated members - standard widths
8.2	Minimum radius of curvature90
8.3	Size factor for beams and tension members
8.4	Values of constants for calculation of radial stresses in
	pitched beams95
10.1	Compensation factor, k ₃₀
10.2	Compensation factor, k ₃₁ 107
	Sampling factor, k ₃₂ 107
10.4	Likely values of coefficients of variation108
C1	Coefficients for slenderness factor of bisymmetrical
	beams with intermediate buckling restraints115
C2	Coefficients for slenderness factors of bisymmetrical
	beams with no intermediate buckling restraints117
E1	Duration of load factor, k ₃₇ 120
G1	Maximum length to width (L/w) ratios for plate bending
	action in plywood124
G2	Formulae for plywood plates spanning in two directions 124
G3	Values of constants, C ₃ to C ₇ inclusive125
H1	Stablity factor, k ₈ for compression126
H2	Maximum width to thickness (w/t) ratios for plywood
	panels stable in compression127
J1	Percentages of plywood design strength transmitted
	across scarf joints128
J2	Minimum overall length of splice plates for glued joints 129
JЗ	Percentages of design strength transmitted across
	spliced butt joints129

Figure

2.1	Length of bearing surface (mm)	24
2.2	Parallel support system	24
2.3	Grid system	26
2.4	k ₈ factor	
3.1	k ₈ for beams – dry timber	32
3.2	k ₈ for beams – green timber	
3.3	Notation for a notch	34
3.4	Graph for factor, kg	35
3.5	Effective length factor, k ₁₀	37
4.1	Positioning of fasteners	43
4.2	Timber thickness and nail length	46
4.3	Eccentric joints	52
4.4	Characteristic strength for a bolt in a two-member joint in	
	dry radiata pine or Douglas fir	54
4.5	Graph of Hankinson formula for stresses and loads	59
5.1	Types of decking lay-up for floors and roofing	66
5.2	Shear flow in a panel sheathed shear wall or diaphragm	68
5.3	Distribution of loading for horizontal diaphragm and	
	shear wall system	69
6.1	Moisture content factor, k ₁₄	75
6.2	Critical sections in some plywood components	
6.3	Stiffener spacing for plywood webs in flexural	
	components	85

Contents continued

8.1 8.2 9.1 B1 C1	Determination of k_{25} factor for pitched beamsSimple span tapered beamsRadius of arris roundingIntermediate restraintsContinuously restrained beam	97 01 11
D1	Continuously restrained column	
F1	Dimensions and nomenclature used in Appendix F1	
App	endix	
Α	The determination of characteristic strengths for metal	
	fasteners for timber1	09
В	Lateral and torsional buckling restraints1	11
С	Slenderness coefficients for beams1	14
D	Slenderness coefficients for columns1	18
Е	Deformation and displacement modulus of	
	mechanically fastened joints1	19
F	Method of computing effective section properties of	
	plywood12	21
G	Design of plywood panels spanning in two directions12	24
Н	Local buckling of plywood elements in compression12	26
J	Design of end or edge joints in plywood12	28

RELATED DOCUMENTS

Reference is made in this document to the following:

NEW ZEALAND STANDARDS

NZS 3601:1973	Metric dimensions for timber
NZS 3602:1990	Code of practice for specifying timber and wood-
	based products for use in building
NZS 3604:1990	Code of practice for light timber frame buildings
	not requiring specific design
NZS 3605:1992	Timber piles and poles for use in building
NZS 3606:1987	The manufacture of glue laminated timber
*NZS 3614:1971	Specification for the manufacture of construction
	plywood
NZS 3615:1981	Specification for strength properties and design
	methods for construction plywood
NZS 3618:	Mechanical stress grading of timber
Part 1:1984	Specification for the mechanical stress grading
	of timber
Part 2:1984	Rules for mechanical stress grading of timber
NZS 3621:1987	Standard names of commercial timbers in New
	Zealand
NZS 3631:1988	New Zealand national timber grading rules
NZS 4203:1992	Code of practice for general structural design
	and design loadings for buildings (known as the
	Loadings Standard)
NZMP 9:1989	Fire properties of building materials and elements
	of structure
NZMP 3640:1992	Specification of the minimum requirements of
	the New Zealand Timber Preservation Council
	Inc.

AUSTRALIAN/NEW ZEALAND STANDARDS

AS/NZS 1530.4-1990 Fire-resistance test of elements of building		
	construction	
AS/NZS 2269-0000	Structural plywood (in preparation)	
AS/NZS 4063:1992	Timber-stress-graded – In-grade strength and	
	stiffness evaluation	

AUSTRALIAN STANDARDS

AS 1649-1974	Methods for the determination of basic working loads for metal fasteners for timber
AS 1720-	Timber structures (known as SAA timber structures code)
Part 1-1988	Design methods
AS 1748-1978	Mechanically stress-graded timber
AS 2754- Part 1-1985	Adhesives for timber and timber products Adhesives for plywood manufacture

* To be superseded by joint AS/NZS Standard (in preparation)

OTHER DOCUMENTS

CAN 3-086-M84 Engineering design in wood (working stress design) Forest Research Institute: Forest Products Division Report FP/TE 28 and Forest Products Laboratory Report FP/TE 99 (unpublished)

NZNSEE Bulletin, Vol. 19, No 2 June 1986, "Horizontal Timber Diaphragms for Wind and Earthquakes", Smith, Dowrick and Dean.

Proceedings, 1988 International Conference on Timber Engineering, Seattle, USA, pages 251-256 "Moment Resisting Nail Plate Joints", R Hunt and A H Bryant.

The New Zealand Building Code Handbook and Approved Documents (NZBC).

Timber Use Manual. New Zealand Timber Industry Federation.

American Institute of Timber Construction Manual.

US Department of Agriculture, Report FPL 34

University of Canterbury, Report CE 89/1

RELATED LEGISLATION

Building Act 1991 Engineers Registration Act 1924

The users of this Standard should ensure that their copies of the above-mentioned New Zealand Standards, overseas and referenced Standards are the latest revisions or include the latest amendments. Such amendments are listed in the annual Standards New Zealand *Catalogue* which is supplemented by lists contained in the monthly magazine *Standards* issued free of charge to committee and subscribing members of Standards New Zealand.

FOREWORD

This Standard sets out the requirements for the design of timber buildings and building elements. This edition is a soft conversion of NZS 3603:1990, which was in the working stress design format, into a limit states design format. The intention is to give the same design solutions for most cases, i.e. it is calibrated to existing practices, so that existing relativities are maintained. Eventually it is expected that adjustments will be made on the basis of reliability analyses to achieve consistent levels of performance between differing materials, load types and building types.

In recent years in-grade testing has provided a means of establishing characteristic stresses for building timbers and, where sufficient information is available, stress levels have been set on this basis rather than as previously derived from the testing of small clear specimens.

Other significant changes in this edition include the introduction of a section on fire resistance (from the Standards New Zealand MP 9 publication, with minor changes) and a section on plywood design (superseding NZS 3615, with major changes). The design stresses for glue laminated timber are now derived from sawn timber stresses, using the same methods as in AS 1720.1.

REVIEW OF STANDARDS

Suggestions for improvement of this Standard will be welcomed. They should be sent to the Chief Executive, Standards New Zealand, Private Bag 2439, Wellington 6001.